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Abstract

Hybrid methods for minimizing least distance functions with Hankel positive
semi—definite matrix constraints are considered. Our approach is based on (i) a
projection algorithm which converges globally but slowly; and (ii) the Newton
method which is faster. Hybrid methods that attempt to combine the best
features of both methods are then considered. Comparative numerical results
are reported.
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1 Introduction

Hankel matrices appear naturally in a variety of problems of engineering interest and
statistical application [8]: comunication, control engineering, filter design, identifica-
tion, model reduction and broadband matching, and in different fileds of mathematics,
e.g., in systems theory, integral equations, and operator theory.

Hankel matrices possess certain properties regarding their rank and positive semi-
definite structures depending on the construction or arrangement of their elements.
In practical applications, these matrices are constructed from noisy observations and
hence some of their nice properties may be destroyed or changed. The signal process-
ing problem is to estimate the matrices with desired properties so that the estimated
matrix is close to the given observation in some reasonable sense.

Throughout this paper, the real Hilbert space of all n X n symmetric matrices
is denoted by H and (.,.) an inner product on H. The Frobenius norm is given
by ||A||% = (A, A) = trace(A?), and the distance between A € ‘H and B € H is
|A— B||r. The orthogonal projection from H onto a closed convex set K; is denoted
by P;. The operator P; defined by

P(B)=A where BeH and A€ K;
provides a solution to the optimization problem

|A = B|| = min{|C - B|; VC €K}
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Also, A = P;(B) is a unique element in the convex set K; characterized by
(B—A,C—-A) <0 VC €K,

A Hankel matrix H is denoted by

hy hy ... h,
hy hs ... h,

I | = Hankel(hy, hy, h, ... hou1). (1.1)
hn hn-l—l s hQn—l

We consider the following problem: Given an arbitrary data matrix F' € R™",
find the nearest positive semi-definite Hankel matrix H to F' that minimizes

minimize ¢ = || — H||p. (1.2)

The problem was studied by MacInnes [12]; he proposed a method for finding
the best approximation of a matrix F' by a full rank Hankel matrix. In [12], the
initial problem of best approximation of one matrix by another is transformed to
a problem involving best approximation of a given vector by a second vector whose
elements are constrained so that its inverse image is a Hankel matrix. The alternating
projection algorithm was successfully used in solving similar approximation problems
for distance matrices [3]. Oh et. al. [13] used the alternating projection onto fuzzy
convex sets when three or more convex sets do not intersect. Related problems were
also studied by [14, 15] and [16] in relation to signal processing problems.

In the past ten years, there has been much interest in the interior point methods
applied to problems with semidefinite matrix constraints (e.g. the survey papers
[18], [17] and [19] and the references therein). Semidefinite programming optimizes a
linear function subject to positive semidefinite matrix. It is a convex programming
problem since the objective and constraints are convex. In this paper, we deal with
a little different problem since the objective is quadratic; also an additional rank
constraint is added which makes the problem unconvex and harder to solve. Here, we
use a different approach than the interior point methods. Section 2 contains a brief
description of the projection method for solving (1.2). The problem is formulated
as a constrained least distance problem in which the constraint is the intersection of
two convex sets. In Section 3, the problem is formulated as a smooth unconstrained
minimization problem, then solved using the Newton method. Thus we are led to
study hybrid methods in Section 4 of the paper. The hybrid method has two different
modes of operation. One is a projection method which provides global convergence
and enables the correct rank to be determined. The other is a Newton method
which enables rapid convergence to be obtained. An important feature concerns the
interfacing of these modes of operation. Thus it has to be decided which method
to use first, and when to switch between methods. Finally, in Section 4, numerical
comparisons of these methods are carried out.
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2 Alternating Projection Algorithm

In this section, we describe a projection algorithm for solving the Hankel matrix ap-
proximation problem (1.2). This algorithm is derived from an alternating projection
algorithm due to Dykstra [5] for finding the least distance from a fixed point to an
intersection of convex sets. Along with this, we give two convex sets and formulas for
certain projection maps that are needed in this section.

It is convenient to define two convex sets for the purpose of constructing the
probem. The set of all n x n symmetric positive semi—definite matrices

Kgp = {A:AcR™™, A" = Aand z"Az > 0 VzcR"} (2.1)
is a convex cone of dimension n(n + 1)/2. Also,
Ky = {H:H e R"™™", H is a Hankel}. (2.2)

is a convex set of dimension 2n — 1.
In addition, we need formulae for the projection maps denoted by Pr(.) and Pg(.)
on to Kg and Kp. The projection map Pgr(F) formula on to Kg is given by [10]

Pr (F) =UAYUT, (2.3)
where A 0O
4+ _ S
A — [ . 0] , (2.4)
and Ay = diag [A1, A2, ..., Ag is the diagonal matrix formed from the positive

eigenvalues of F'.
The projection map Py (F') formula on to Ky is given by

PH(F) = Hankel(ho, hl, ceey hgn_l), (25)
where
1 k
hk:Eka-i-l—ii; k=1,...,n
i=1
1 2n—k
hk = on — ; fn—z'-i-l k+i—mns k=n+1,...,2n— 1. (26)

In other words, Py maps each elements in anti-diagonal of F' into the average of the
elements in that anti-diagonal of F'.
The Dykstra-Han algorithm solves the problem

minimize £ —x||2

m
subject to X € ﬂ K;,
i=1
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where the K; are convex sets in IR" and f is a given arbitrary point. The algorithm
initializes f* = f and generates a sequence {f*)} using the iteration formula

fHD = £8P (. P(EW)) — Py (FW). (2.7)

Here P;(f) denotes the [ projection of f on to K, that is, the (unique) nearest vector
to f in K;. It is shown by Boyle and Dykstra [4] that Pi(... P,(f*®)...) — x* for any
i > 1. However the sequence {f(*)} does not in general converge to x* (see [2]).

In applying Dykstra-Han algorithm to the Hankel matrix approximation, it is
appropriate to use the Frobenius matrix norm, and to express (1.2) as

minimize |F— H||r
subject to H € KrN Ky (2.8)

where Kr and Ky are given by (2.1) and (2.2), respectively. To apply algorithm
(2.7) we need the formulae for the projection maps Pr(.) and Pg(.), given by (2.3)
and (2.5) and corresponding, respectively, to Pi(.) and Py(.) in (2.7). These are the
maps from H on to Kr and Ky.

Now we use the projection maps Pr(F') and Py(F') given by (2.3) and (2.5) to
implement the Dykstra-Han algorithm (2.7). Hence, the new algorithm is as follows:
Given an arbitrary distance matrix F' € IR™*™, the algorithm is initialized by F(®©) = F
and the iteration formula is

FOD = FO + Py(Pu(F®))) — Pu(F®). (29)

The sequences { Pr(F®)} and { Py (Pr((F®))} converge to the solution H of (2.8)
and hence (1.2).

3 Newton Method

In the previous section, the alternating projection algorithm computes a unique so-
lution for (2.8) since the sets Kr and Ky are convex. When Newton method are
applied to solve the problem, this requires the rank knowledge of the matrix (H);
hence (2.8) loses convexity and Newton method loses second order rate of convergnce
and this increases the difficulty. Therefore, in this section, we consider a different
approach to (2.8). The main idea is to replace (2.8) by a smooth unconstrained opti-
mization problem in order to use second order convergent Newton method. Problem
(2.8) is solved by Newton method, also the relevant formulae for derivatives are given.
Partial connection between the problem and signal processing is given in the following
factorization.

Classical results about Hankel matrices that go back to [6] may be re-stated ac-
cording to which a nonsingular positive semi-definite real Hankel matrix can be rep-
resented as the product of a Vandermonde matrix and its transpose and a diagonal
matrix in between

H=VDVT (3.1)
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where D is an m x m diagonal matrix with positive diagonal entries and V is an n xm
real Vandermonde matrix

V=1 i=0,...,n—1, j=1,....m (3.2)

(see [1, 11]).

We assume that the rank of H is known to be m. If the rank m is known, it
is possible to express (1.2) as a smooth unconstrained optimization problem in the
following way. Since the unknown in (1.2) is the matrix H, therefore the unknowns are
chosen to be the elements of the matrices V'; x4, ..., x,, and D; dy, ..., d,, introduced
in (3.1). This gives us an equivalent unconstrained optimization problem to (1.2) in
2m unknowns expressed as

minimize  #(V,D) = ||[F — VDVT|3. (3.3)

Then the objective function ¢(V, D) is readily calculated by first forming H
from V and D as indicated by (3.1) and (3.2), after which ¢ is given by ¢(V, D) =
|F— H||% = ||F — VDVT"|J%. The elements of the matrix H take the form

hij = f: dkxf:'j_g. (34)
k=1
Hence . . .
o(V.D)= > (hij — )" = Y (D dua"™°} — fiy)*. (3.5)
ij=1 ij=1 k=1

Our chosen method to minimize ¢(X) is the Newton method. This requires ex-
pressions for the gradient and the Hessian of ¢. The gradient vector is given by:

gz -2 {x?[<lidk$?> - fz’j”, (3.6)

ij=1

0¢ n (& .
oz, 2> {O‘dsf’fs [(;dk%) - fin, (3.7)

i,j=1

where s = 1,...,m and a = ¢ + j — 2. The Hessian matrix is given by:

82¢ - (oY)
adtads - 2 iJZZI .fl:t xs ) (38)
i=j#1
82¢ 82¢ n o1 - m §
al'sads - adsal's — 217‘72:1 {@dsl.s + Q'T.S kgl dkl‘k - f” 3 (39)
2 2 n
= i = 2 > adafa T, t#s, (3.10)

3xtads N 3ds@xt

i,j=1
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82¢ = a— a— G a
s = Q'Z {oﬂdixi 2 4+ ala—1)dae? <Z dpry — fij)}, (3.11)
s i,j=1 k=1
¢ = 2 i oPdydyx® st t# s (3.12)
0x: 0% Py S T ,

where s=1,..m,t=1,..mand a =1+ 7 — 2.

Some care has to be taken when choosing the initial value of the matrices V' and
D, in particular the rank m. If not, the minimization method may not be able to
increase m. An extreme case occurs when the initial matrix V' = 0 and D = 0 is
chosen, and F' # 0. It can be seen from (3.6) and (3.7) that the components of the
gradient vector are all zero, so that V' = 0 and D = 0 is a stationary point, but not
a minimizer. A gradient method will usually terminate in this situation, and so fail
to find the solution.

An advantage of the Newton method is that it allows the spatial dimensions to
be chosen by the user. This is useful when the rank is already known. For example
if the entries in F' are derived from a matrix that has rank m = 2 or m = 3.

In general however the rank of the matrix is not known, for example the matrix
that assumed has rank m = 3 might be irreducibly embedded in matrix with rank
m = 1 or m = 2. We therefore must consider an algorithm in which we are prepared to
revise our estimate of m. A simple strategy is to repeat the entire Newton method for
different values of m. If m* denotes the correct value of m which solves (1.2), then it is
observed that the Newton method converges rapidly if m < m*, and exhibits second
order convergence. On the other hand if m > m* then slow convergence is observed.
One reason is that there are more variables in the problem. Also redundancy in the
parameter space may have an effect. Thus it makes sense to start with a small value
of m, and increase it by one until the solution is recognised. One way to recognise
termination is when H®) agrees sufficiently well with H**1) where H®*) denotes the
positive semi-definite Hankel matrix obtained by minimizing ¢.

4 Hybrid Methods

A combination of both algorithms is introduced. Projection methods are globally
convergent and hence potentially reliable, but often converge slowly, which can be very
inefficient. Newton method is reliable and have a second order rate of convergence,
but require the correct rank m* to be known. We therefore consider hybrid methods
in which the projection algorithm is used sparingly as a way of establishing the correct
rank, whilst the Newton method is used to provide rapid convergence.

In order to ensure that each component method is used to best effect, it is impor-
tant to transfer information from one method to the other. In particular, the result
from one method is used to provide the initial data for the other, and vice versa. This
mechanism has a fixed point property so that if one method finds a solution, then
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the other method is initialized with an iterate that also corresponds to the solution.
It is clear how to use the output data from Newton in the projection method but,
unfortunately, the reverse is not easy.

We will evaluate two different algorithms which differ in respect of how m(© is
initialized. Algorithm 1 is expressed as follows: Given any data matrix F' € IR™*",
let s be some pre-selected positive integer number and € some small number. Then
the following algorithm solves (1.2)

Algorithm 1 (F© := F s, ¢):

repeat projection method
until m =mU=9) j=1,2,...s.
repeat
Apply one iteration of projection method;
m(® = O
repeat Newton method;
until [|[x*=1) —x®)|| <e and ||d*D —d®| < ¢

F® =vDVT, (x*® and d® from Newton method)
until ||FF1D — FR)|| < ¢
return (F* := F®) x* .= x® d* := d® m* .= mW¥),

The choice of s is a compromise between two effects. If s is small then the rank
may not be accurately estimated, but the number of (expensive) iterations taken in
the projection method is small. On the other hand, if s is large then a more accurate
rank is obtained but the projection method needs more iterations.

In Algorithm 2, m(® is supplied by the user. This approach avoids the initial
sequence of projection iterations, but works well if the user is able to make a good
estimate of the rank, which is often the case. Thus, we can express Algorithm 2 as
follows: Given any data matrix F' € IR™", let ¢ be some small number; also choose
m(®  as a small integer number. Then the following algorithm solves (1.2)

Algorithm 2 (F© := F,m(® ¢):

repeat
repeat Newton method;
until [|[x*=1) —x®)|| < ¢ and ||d*D —dP)|| < ¢
F® =vDVT, (x*) and d® from Newton method)
Apply one iteration of projection method;
m©® = O

until ||[F*=D — FR)|| < ¢;

return (F* .= F® x* .= x® d* := d® m* .= m®¥).
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5 Numerical Results

The tables below show the performance of the four algorithms, projection, Newton,
hybrid Algorithm 1 and hybrid Algorithm 2. All calculations were performed with
MATLAB 6 on a Pentium 3. The results were obtained by applying the methods as
follows. A matrix H was formed from (3.1) by randomly choosing m weights d; in
matrix D, 0 < d; < 1.0 and m values z;,0 < z; < 1.0 to determine the Vandermonde
matrix V. The matrix thus obtained by (3.1) was perturbed by adding random noise
matrix S to H, where elements of S vary between —0.10 and 0.10. The problem
is to recover the m frequencies z; and weights d; that determine the matrix before
the noise was added. The convergence criterion is that the maximum changes of the
matrix H® should be less than 1 x 1072,

PA NA Al A2

n ||m*| PI | CPU | TNI| CPU || s | PI [m® | NI| CPU || TNI | CPU
5 3 1321 0.88 6 015 || 5| 5 2 4 1 0.11 4 0.1

10| 4 | 447 | 2.97 17 | 3.06 || 5| 6 5 19 | 1.71 10 | 1.75
15| 5 | 604 | 7.86 37 | 824 || 10| 21 7 |11 3.27 12 | 2.69
20| 7 | 701 | 15.38 || 84 |39.32 | 20| 29 8 |16 |21.31 || 17 |12.73
25| 7 [ 828 |27.13 || 82 [69.44 | 30| 121 7T |18 | 20.1 24 | 19.3
30 9 | 6442966 | 97 | 8.8 |30 93 | 9* | 19| 23.3 28 | 25.1

Table 1: Comparing the four algorithms.
PA: projection algorithm. NA: Newton algorithm. Al: Hybrid Algorithm 1. A2:
Hybrid Algorithm 2. PI: Number of iterations performed by projection algorithm.
CPU: time in seconds. NI: Number of iterations performed by Newton algorithm.
TNI: Total number of iterations performed by Newton algorithm.

A2
n|m©] NIlin | m® from | NIin
Newton OPA Newton
5 1 2 3* 2
10 2 3 4* 7
15 2 4 H* 8
20 3 5 T 12
25 3 6 . 18
30 3 11 9* 17

Table 2: Detailed progress of Algorithm 2.
OPA: One iteration of the projection algorithm. NI: Number of iterations.
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Table 1 summarizes the results for the four different approaches and Table 2 shows
the progress of Algorithm 2 in more detail. All four algorithms converge to essentially
the same values. An asterisk indicates where the correct rank has been identified. In
some cases, with Algorithm 1, the final rank is m* + 1 or m* 4+ 2 but the solution is
within the required tolerance. However, the time consumed by Algorithm 1 in these
cases is larger than the other algorithms, because of the extra variables added on, see
for example n = 20.

For the projection algorithm, each iteration involves an eigensolution, which en-
tails relatively expensive O(n?) calculations; also the number of iterations is very
large. Thus, the projection algorithm is not competitive. For other algorithms, the
housekeeping associated with each iteration is O(n?). Also, if care is taken, it is
possible to calculate the gradient and Hessian in O(n?) operations. For the Newton
algorithm, the initial value m® = 1, and m is increased by one until the solution is
found. The total number of iterations performed by the Newton algorithm is relativity
large. This is because Newton algorithm is repeated m times until the correct rank is
found. This makes the Newton algorithm more expensive than the other algorithms
Also, it can be seen that the total number of iterations and time is much greater
than is required by the hybrid methods. The initial value m(? is rather arbitrary; a
smaller value of m(® would have given an even larger number of iterations.

Both hybrid algorithms are found to be effective. Asn increases, Algorithm 1 takes
an increasing number of projection iterations before the rank settles down. We find
it better to increase the value of s as the value of m* increases. Once the projection
iteration has settled down, the Newton method finds the solution rapidly and no
further projection steps are needed. Algorithm 2 requires more number of iterations
(see Table 2) in the first call of the Newton method, after which one projection step
finds the correct rank, and the next call of the Newton algorithm finds the solution
in a few iterations.
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