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Abstract

A concise characterization is presented for a Euclidean distance matrix in terms
of null-space matrices, and methods for the solution of the Fuclidean distance
matrix problem are considered. One approach (Glunt et al. [8]) is to formulate
the problem as a constrained least distance problem in which the constraint is
the intersection of two convex sets. The Dykstra-Han projection algorithm can
then be used to solve the problem. This method is globally convergent but the
rate of convergence is slow. However the method does have the capability of
determining the correct rank of the solution matrix, and this can be done in
relatively few iterations. If the correct rank of the solution matrix is known, it is
shown how to formulate the problem as a smooth unconstrained minimization
problem, for which rapid convergence can be obtained by for example the BFGS
method. This paper studies hybrid methods that attempt to combine the best
features of both types of method. An important feature concerns the interfacing
of the component methods. Thus it has to be decided which method to use
first, and when to switch between methods. Also it may not be straightforward,
as we shall see here, to use the output of one method to start the other method.
Difficulties such as these are addressed in the paper. Comparative numerical
results are reported.

1 Introduction

Symmetric matrices that have non-negative offdiagonal elements and zero diagonal
elements arise as data in many experimental sciences. This occurs when the values
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are measurements of squared distances between points (e.g. atoms, stars, cities) in a
Euclidean space. Such a matrix is referred to as a Fuclidean distance matriz. Because
of data errors such a matrix may not be exactly Euclidean and it is desirable to find
the best Euclidean matrix which approximates the non-Euclidean matrix. The aim
of this paper is to study methods for solving this problem.

An important application arises in the conformation of molecular structures from
nuclear magnetic resonance data (see Havel et al. [10] and Crippen [4], [5]). Here a
Euclidean distance matrix is used to represent the squares of distances between the
atoms of a molecular structure. An attempt to determine such a structure by nuclear
magnetic resonance experiments gives rise to a distance matrix F' which, because of
data errors, may not be Euclidean. There are many other applications in subjects
as diverse as archeology, cartography, genetics, geography and multivariate analysis.
Pertinent references are given by Al-Homidan [1].

Characterization theorems for the Euclidean distance matrix have been given in
many forms over the years. In Section 2 we show that a very concise form of this
result can be proved in terms of null-space matrices, that brings out the underlying
structure and is readily applicable to the algorithms that follow.

Many advances have taken place in constrained optimization over the last forty
years or so. There are now effective methods for situations in which the objective
and constraint functions are smooth functions. Under reasonable assumptions, these
methods can be shown to converge globally (that is from any starting point) to a point
which satisfies optimality conditions for the problems. Also the rate of convergence
can often be shown to be superlinear. Some progress has also been made for problems
in which non-smooth functions occur. If these functions are a composition of a
convex polyhedral function and a smooth function, then again globally and superlinear
convergent methods have been suggested. This paper addresses a rather more difficult
non-smooth optimization problem in which some matrix, defined in terms of the
problem variables, has to be positive semi-definite. One way to handle this problem
is to impose a functional constraint in which the least eigenvalue of the matrix is
non-negative. However, if there are multiple eigenvalues at the solution, which is
usually the case, such a constraint is non-smooth, and this non-smoothness cannot
be modelled by a convex polyhedral composite function. An important factor is the
determination of the multiplicity of the zero eigenvalues, or alternatively the rank of
the matrix at the solution. If this rank is known it is usually possible to solve the
problem by conventional techniques.

One approach (Glunt et al. [8]) is to formulate the Euclidean distance matrix
problem as a constrained least distance problem in which the constraint is the inter-
section of two convex sets. The Dykstra-Han alternating projection algorithm can
then be used to solve the problem. This idea is outlined in Section 3. This method
is globally convergent but the rate of convergence is linear or slower. It is this latter
feature that has probably contributed to the relatively little interest that has been
shown in such methods. However the method does have the capability of determin-
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ing the correct rank of the solution matrix, and this can be done in relatively few
iterations.

If the correct rank of the solution matrix is known, it is shown in Section 4 how to
formulate the problem as a smooth unconstrained minimization problem, for which
rapid convergence can be obtained by for example the BFGS method. We discuss
how best to parametrize the problem, and give expressions for the objective function
and its first derivatives. A trial and error approach to estimating the correct rank is
possible, but is not very appealing.

Thus we are led to study hybrid methods in Section 5 of the paper. The hybrid
method has two different modes of operation. One is a projection method which
provides global convergence and enables the correct rank to be determined. The
other is a quasi-Newton method which enables rapid convergence to be obtained. An
important feature concerns the interfacing of these modes of operation. Thus it has
to be decided which method to use first, and when to switch between methods. Also
it may not be straightforward, as we shall see here, to use the output of one method
to start the other method. Difficulties such as these are addressed in the paper.
Numerical experiments are reported in Section 6.

Recently, and since the research in this paper was carried out, there has been
much interest in interior point methods applied to problems with semi-definite matrix
constraints (e.g. Alizadeh et al. [2]). It would certainly be of interest to compare this
approach with the hybrid methods described in our paper.

Throughout this paper the lower case boldface letters such as x, y, v are used
to denote vectors. Matrices are denoted by capital letters such as A, B, C. We use
the notation Diag(A) to denote diag(a;), i = 1,...,n . Superscript (k) generally
denotes quantities related to the kth iterate, for example f®), X ®) otc,. Quantities
relating to the solution are superscripted with an asterisk, e.g. r*, D*, etc.

2 The Euclidean Distance Matrix Problem

In this section the definition of the Euclidean distance matrix is given, and the rela-
tionship between points and distances is summarized. A characterization theorem for
the Euclidean distance matrix is proved in a concise way that brings out the under-
lying structure and is readily applicable to the algorithms that follow. The theorem
is essentially due to Schoenberg [12] in the case that p = x; (see below). Young and
Householder [13] independently obtain a similar result.

It is necessary to distinguish between distance matrices that are obtained in prac-
tice and those that can be derived exactly from n vectors in an affine subspace.

Definition 2.1. A matrix D € R™" is called a distance matrix iff it is symmetric,
the diagonal elements are zero
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and the off-diagonal entries are non-positive
di; <0 Vi # j.

Definition 2.2. A matrix D € R™™" is called a Euclidean distance matrix iff there
exist n points Xi,...,X, in an affine subspace of dimension R" (r < mn —1) such
that

dy=—llxi =5 Vil 2.1)

The negative sign in the definition of d,; is not common, but is included to simplify
the subsequent presentation.

The Euclidean distance problem can now be stated as follows. Given a distance
matrix F € R™*", find the Euclidean distance matrix D € IR"*" that minimizes

|F = Dl|r (2:2)

where ||.||r denotes the Frobenius norm.

To determine the dimension of an affine subspace we need to make a translation
into a subspace that contains the origin. Consider vectors x1,...,x, in R™. A vector
p is said to be a weighted combination of these vectors iff

p:ZXiyia Z?Jizl-
i=1 i=1

We choose a fixed vector p in this way and examine the displacements from p.

Definition 2.3. The vectors x1,...,X, are in an affine subspace of dimension r iff
the vectors x; — p, ¢ =1,...,n have rank r.
In matrix notation the vectors x1,...,x, are columns of an m X n matrix X and we
can express p = Xy for some vector y such that e’y = 1 where e = (1,...,1)T. The
displacement vectors x; — p, 2 = 1,...,n are columns of the matrix

X -pef =X - Xye' =XP (2.3)
where

P=1-ye" (2.4)

is a skew projection matrix. Clearly rank(P) = n — 1 and PTe = 0. A convenient

choice for p is the vector x;, in which case y is the unit vector e; and P is a matrix

whose first column is the zero vector. Another possibility is to choose the centroid

p = Xe/n, in which case P becomes the symmetric projection matrix P = I —ee’ /n.
The vector e is seen to be significant and we denote

M={veR": vie=0}

as the null space of e. Let columns of a matrix Z € R™ ™™ provide a basis for M.
Z is called a null-space matrix and is characterized by rank(Z) = n—1 and ZTe = 0.
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A possible choice for Z is the matrix, Z, say, obtained by selecting n — 1 linearly
independent columns from the matrix P in (2.4). Definition 2.3 is then equivalent to
the statement that rank(X Z,) = r and hence

rank(XZ) =r (2.5)

for any null-space matrix Z. This structure enables us to characterize a Euclidean
distance matrix in a concise way.

Theorem 2.1. Let D € R™" be a symmetric matrix with Diag(D) = 0. Then D
is a Euclidean distance matrix iff D is positive semi-definite on M (or equivalently
ZTDZ is positive semi-definite). Moreover if rank(Z"DZ) =r then D can be
derived from vectors Xi,...,X, in an affine subspace of dimension r .

Proof Let D be a Euclidean distance matrix which is derived from columns of the
m x n matrix X. Then

T
Z DZ Z zkzdklzlg Z Zki 2Xk X — Xk E— X Xl)Zl]
kl

from (2.1). The term involving 3, z;X1 Xk 21 can be rearranged as (), zxiXp Xk) 31 21)5
and is zero because Z"e = 0. Likewise the term derived from x]x; is zero. Thus

T T
Z"DZ);; =2 Z 2kiX) X121 = 2 Z 2kiTqkTql2)
Kkl kql

or in matrix notation

7"DZ =272"X"XZ.
Hence ZTDZ is positive semi-definite. If the columns of X are in an affine subspace
of dimension r then from (2.5) r = rank(X Z) = rank(Z1DZ).

Conversely we let D be a symmetric matrix such that Diag(D) = 0 and Z7DZ
is positive semi-definite of rank r, and we show how to construct a matrix X whose
columns are in an affine subspace of dimension r such that D is derived from X. We
define A = LPTDP where P is given by (2.4), and choose the matrix Z, above as the
null space matrix. It readily follows that

r =rank(Z] DZ,) = rank(A).

[Proof: Since the extra column in P is a linear combination of the columns of Z, it
follows that rank(Z] DZ,) = rank(Z] DP). Likewise we deduce that rank(Z] DP) =
rank(P7DP).] Tt also follows that A is positive semi-definite, so we can express

A=X"TX (2.6)
where X € R"™" and rank(X) = r. Then
—lxi = x;l3 = 2x{x; —x{x —x;x; = 2a; — a;; — aj

p; Dp; — ip; Dp; — 3p; Dp; (2.7)
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where p; denotes column i of P. It follows from (2.4) that p; = €; — y. Substituting
into (2.7) and using d;; = 0 yields

—[|x; — x; |5 = djj.

Thus D is derived from X. Moreover yZ Ay = 0 by definition of A and (2.4). It
follows from (2.6) that || Xy| = 0 and hence p = Xy = 0. Finally we can deduce
from rank(X) = r that rank(XP) = 0, and it follows from (2.3) and Definition 2.3
that the columns of X are in an affine subspace of dimension r. [ |

The special case in which p = x;, y = e; and P = I — e;e’ is particularly
useful. The resulting matrix A = %PTDP has zeros in the first row and column, and
a general expression for the remaining elements is

Q5 = %(dlj — dh' — dlj) 1 Z 2, ] Z 2. (28)
Then the vectors xi,...,x, that are constructed from (2.6) are such that x; = 0.

Another useful application of Theorem 2.1 occurs in the projection algorithm of

Section 3 for which an orthogonal basis for the null space is available.

Theorem 2.2. Let @Q € IR"*" be the Householder matrix given by

2
Q=1-——ww', w=(1,....,1,1+n)". (2.9)
W''W

Then the distance matrix D € IR™™" is a Euclidean distance matrix iff the (n — 1) x
(n—1) block D, in

QDQ =

D, d
d; 5} (2.10)

is positive semi-definite.

Proof Because @ is an othogonal matrix and Q7e = e,,, it follows that the first n —1
columns of @ provide a null space matrix Z. Since D; = Z7DZ the result can be
deduced from Theorem 2.1. [ |

3 The Projection Algorithm

In this section we describe a projection algorithm due to Glunt et al. [8] for solving the
Euclidean distance matrix problem (2.2). At the end of the section, a more simple and
flexible rearrangement of the algorithm is also given. These algorithms are derived
from an alternating projection algorithm due to Dykstra [6] for finding the least
distance from a fixed point to an intersection of convex sets. This algorithm is given
independently by Han [11]. An important feature is the generation of formulae for
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certain projection maps that are needed. More background is given about projection
methods for the Euclidean distance matrix problem in [1].
The Dykstra-Han algorithm solves the problem

minimize |f — x]|2
m
subject to X € ﬂ K;
i=1
where the K; are convex sets in IR” and f is given. The algorithm initializes f° = f
and generates a sequence {f(¥)} using the iteration formula

fEH0 = £0 4 PP (ER) ) = Pi(E®). (3.1)

Here P;(f) denotes the Iy projection of f on to Kj, that is the (unique) nearest vector
to f in K. Tt is shown by Boyle and Dykstra [3] that P;(... P,(f*))...) — x* for any
i > 1. However the sequence {f(¥)} does not in general converge to x* (see [1]).

In applying this method to the Euclidean distance matrix problem, it is appropri-
ate to use the Frobenius matrix norm, and to express (2.2) as

minimize |F — D||r
subject to D e Ky NKy (3.2)
where
Ky={A: AcR"™, A"=4, x"Ax>0 Vxe M} (3.3)
is a convex cone, and
Kyg={A: AcR™, AT =A ;=0 Vi=1,...,n} (3.4)

is a subspace. Clearly from Theorem 2.1, D € K, N K, if and only if D is a
Euclidean distance matrix.

To apply algorithm (3.1) we need formulae for the projection maps Py (.) and
Py(.), corresponding respectively to P;(.) and Py(.) in (3.1). These are the maps from

K={A: AcR™, A=A"}

on to Ky and K. Because these projections maintain symmetry, there is no need to
impose the symmetry constraint explicitly. Since K, is a subspace, Py is straightfor-
wardly defined by

P,(F) = F — Diag(F), (3.5)

that is P; maps F' into the matrix obtained by zeroing the diagonal elements of F'.
The projection map Py, (F') is determined by finding the solution D of the problem

minimize |F — D||r
subject to D € K. (3.6)
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It is convenient to use the orthogonal matrix @ in (2.9) to express

B Ff B D, d
F=Qlg (o ad D=Q[y §le
Then the constraint D € K, is equivalent to the constraint that D; > 0. Since
_ B _||FA—=Dy f-d
I - Dllr = Q- D)llr = | _ gt 5] -

it follows that ||F' — D||z is minimized when d = f, § = ¢ and D is the solution of
the problem

minimize |F\ — D ||r
subject to Dy > 0. (3.7)

Using a theorem of Higham [11], the solution of (3.7) is given by
D, = UATUT, (3.8)

where UAUT is the spectral decomposition of F} and the components of AT are
defined by \;” = max();,0), i=1,...,n— 1. Together these results give

UATUT f

PM(F):Q[ T AQ (3.9)

as the required solution of (3.6).

We can now use the projection maps Py (F) and Py(F') given by (3.9) and (3.5)
to implement the Dykstra-Han algorithm (3.1). Given a distance matrix F' € R™*",
the algorithm is initialized by F(®©) = F and the iteration formula is

FO = FO 4 Py(Py(FW)) = Pu(F®). (3.10)

This is the form of the algorithm used by Glunt et al. [8]. The sequences { Py, (F®)}
and {Py(Py(F™))} both converge to the solution D* of (3.2) and hence (2.2).

We have found it more convenient to use a different form of the algorithm. By
virtue of (3.5), the iteration formula (3.10) can be rearraged as

FU+) = ) _ Diag( Py, (F®)). (3.11)

The effect of this formula is that it only changes the diagonal elements of F*). This
suggests that we iterate with the diagonal matrix

AW = &) _ | (3.12)
The iteration formula (3.11) then becomes

AEFD) — A®) _ Diag(D®), (3.13)
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where D*) = Py, (F+A®). These matrices D®) converge to the solution of (2.2). An
advantage of this formulation, which we make use of in Section 5, is that the iteration
can be initialized with any diagonal matrix A® and not just A(®© = 0. Moreover,
given any F*) (or A®), the test

Diag(D®) =0 (3.14)

determines whether D®*) is a Euclidean distance matrix or not.

4 Solution by Unconstrained Minimization

In this section we consider a different approach to the Euclidean distance matrix prob-
lem (2.2). The main idea is to replace (2.2) by a smooth unconstrained optimization
problem in order to use superlinearly convergent quasi-Newton methods. To do this
it is necessary to estimate the rank r of the underlying affine subspace, as this piece
of information is not generally known. Once a value of r is chosen, the problem (2.2)
is solved by the BFGS method. We give the relevant formulae for derivatives. At the
end of the section we discuss details of initialization and implementation.

If the rank r is known, it is possible to express (2.2) as a smooth unconstrained
optimization problem in the following way. The unknowns in the problem are chosen
to be the elements of the matrix X introduced in (2.3). We take X to have r rows
and choose the translation p = x; so that the vector x; = 0. This gives us an
unconstrained optimization problem in r(n — 1) unknowns. We therefore parametrize
X by variables z;, i =1,...,r(n — 1) in the following way

0 T 9 s Tn-1
0 T Tn s Toip—

Y- +1 2(. 1) (4.1)
0 Ze-t)m-n+1 0 T

(In fact it is possible to parametrize the matrix with 2(r — 1)(r — 2) fewer unknowns
by rotating X to be upper trapezoidal. However it is indicated in [1] that the re-
sulting method tends to use more line searches on a selection of randomly generated
problems.)

The objective function ¢(X) is readily calculated by first forming D from X as
indicated by (2.1), after which ¢ is given by ¢(X) = ||D — F||%. The elements of the
matrix D take the form

r—1
2 .
diu =0, diy = dy = —ZSEHkm,l 1= 2,...,n
k=0
r—1
2 .o
dij = dji = _Z(fUH-km—l - $j+km_1) ,] = 2,...,n

k=0
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where m denotes n — 1. Hence

n

o(X) = > (fiy — diy)’

ij=1

- Z{Z(fﬂ - 11 Z_ fzy - ’L] }

'\» \

n r—1
= 2{Z(sz2+km—1 + fu)?

1=1 k=0

Z_: 2 Tivkm—1 — Tjtkm—1) + [fi)?} (4.2

Our chosen method to minimize ¢(X) is the BFGS quasi-Newton method (see for
example [7]). This requires expressions for the first partial derivatives of ¢, which are
given from (4.2) by

a¢ r—1 )
9r. st{z Tpppm + fra10}

r—1

+ Z Z Livkm — «Tj+km)2 + fz+1,j+1](«’17s - xj+tm)} (4-3)

forall s=1,...,7r(n—1) where ¢t = (s—I)/m and [ = mod(s,m) andif [ =0 then
[ = m. The BFGS method also requires the Hessian approximation to be initialized.
Where necessary we do this using a unit matrix.

Some care has to be taken when choosing the initial value of the matrix X, in
particular the rank of X must be r. If not the minimization method may not be
able to increase the rank of X. An extreme case occurs when the initial matrix
X = 0 is chosen, and F # 0. It can be seen from (4.3) that the components of the
gradient vector are all zero, so that X = 0 is a stationary point, but not a minimizer.
A gradient method will usually terminate in this situation, and so fail to find the
solution.

A reliable method for initializing X is to use the construction suggested by (2.8)
and (2.6). Thus we define the elements of A from those of F' by

aij = 2(fij — fu— fij) 1>2, j=>2. (4.4)

The first row and column of A are zero and are ignored. We then find the spectral
decomposition UAUT of the nontrivial part of A. Finally the nontrivial part of X
n (4.1) is initialized to the matrix A2UT where A, = diag(\;), i = 1,...,7 is
composed of the r largest eigenvalues in A, and columns of U, are the corresponding
eigenvectors. When A, is positive definite, this procedure ensures that X has rank r.
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Otherwise the process must be modified in some way, for example by ensuring that
the diagonal elements in A, lie above a positive threshold.

An advantage of the unconstrained method is that it allows the spatial dimensions
to be chosen by the user. This is useful when the rank is already known. For example
if the entries in F' are derived from distances between cities then the dimension will
be no more than r = 2. Likewise, if the entries are derived from distances between
atoms in a molecule or stars in space, then the maximum dimension is r = 3.

In general however the rank of the affine subspace is not known, for example the
atoms in a molecule may turn out to be collinear or coplanar. We therefore must
consider an algorithm in which we are prepared to revise our estimate of r. A simple
strategy is to repeat the entire unconstrained method for different values of r. If r*
denotes the correct value of r which solves (2.2), then it is observed in [1] that the
BFGS method converges rapidly if » < r*, and exhibits superlinear convergence. On
the other hand if » > r* then slow convergence is observed. One reason is that there
are more variables in the problem. Also redundancy in the parameter space may
have an effect. Thus it makes sense to start with a small value of r, and increase it
by one until the solution is recognised. One way to recognise termination is when
D) agrees sufficiently well with D"*1 | where D) denotes the Euclidean distance
matrix obtained by minimizing ¢ when X in (4.1) has r rows. Numerical experience
is reported in [1] for solving various test problems by this method.

An obvious alternative to using the BFGS method is to evaluate the Hessian
matrix of second derivatives of ¢(X) and use Newton’s method. This would be likely
to reduce the number of iterations required. However there is also the disadvantage
of increased complexity, and increased housekeeping at each iteration. Moreover
it is possible that the Hessian has some negative eigenvalues so a modified form
of Newton’s method would be required. A simple example serves to illustrate the
possibility of a negative eigenvalue. Take n = 2, r = 1 and let F = [fl Bl] and
X = [0 zy]. Then ¢ = 2(1 — 2?)2. This has global minimizers at x; = +1, a local
maximizer at x; = 0, and the Hessian is negative for all z; such that 3z7 < 1.

5 Hybrid Methods

The algorithms of Sections 3 and 4 have entirely different features, some good, some
bad, which suggests that a combination of both approaches might be successful.
Projection methods are globally convergent and hence potentially reliable, but the
rate of convergence is first order or slower, which can be very inefficient. Quasi-
Newton methods are reliable and locally superlinearly convergent, but require that
the correct rank r* is known. We therefore consider hybrid methods in which the
projection algorithm is used sparingly as a way of establishing the correct rank, whilst
the BFGS method is used to provide rapid convergence.

In order to ensure that each component method is used to best effect, it is impor-
tant to be able to transfer information from one method to the other. In particular a
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mechanism must be established so that the result from one method is used to provide
the initial data for the other, and vice versa. This mechanism must have a fixed point
property, so that if one method finds the solution, then the other method is initialized
with an iterate that also corresponds to a solution. We show in this section how this
can be done.

We have already indicated at the end of Section 3 how the projection method can
be initialized with any diagonal matrix A. However if D®) is the Euclidean distance
matrix derived from the result matrix X*) of the BFGS method, it is not obvious
how to calculate an initial matrix A for the projection method. To address this
difficulty, we consider an iteration of the projection method. The current iterate A®*)
determines F® = F + A® and the product QF®Q yields F®, £ and ¢®),
where

R f(’“)] 0 (5.1)

FY=q [f(k)T ¢

The spectral decomposition FF) = UMAB®TET g caleulated and D® is determined
by

70 AR+ TRT (k)
DW = Py (FV) = Q { T C(k)} Q. (5.2)

It follows from (5.1) and (5.2) that

UE (AW — ABYWT g

(D® — e = @ o 0] Qe =0,

since Qe = e,. Setting F*) = F + A®) from (3.12) implies that
A®le = (D® — F)e. (5.3)

This expression is exact for the projection method.

Because A is diagonal, (5.3) can be used to compute a matrix A®) from any
given matrix D). In our hybrid algorithm we use this as a way of initializing A*) for
the projection method, from the D) matrix obtained from the BFGS method. If the
BFGS method is using the correct rank » = r* and has found the global solution of
¢, then D*) is the solution D* of (2.2). Hence (5.3) gives the correct solution A* for
the projection method. Even if the rank r # r* in the BFGS method, (5.3) enables
some useful information to be extracted from D®).

Conversely we let D*) be the matrix obtained in (5.2) by the projection method,
and consider how to initialize X for the BFGS method. If D) is a Euclidean distance
matrix, then it solves (2.2), and by Theorems 2.1 and 2.2, the correct rank r* is the
number of positive eigenvalues in the matrix A®*). We denote this number by A/(AK).
In general, when D®*) is not a solution, we use N'(A%®)) to determine the row dimension
r of X in (4.1) for the BFGS method. To determine the elements of X we again use
the construction suggested by (2.8) and (2.6). Thus we define the elements of A from
those of D®) by

Q5 = %(dlj — dh' — dlj) 1 Z 2, ] Z 2. (54)
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The first row and column of A are zero and are ignored. We then find the spectral
decomposition UAU” of the nontrivial part of A. Finally the nontrivial part of X in
(4.1) is initialized to the matrix AY2UT where A, = diag()\;), i = 1,...,r contains
the r positive eigenvalues of A, and columns of U, are the corresponding eigenvectors.

We have found that it is sufficient to carry out only one iteration of the projection
method between each call of the BFGS method. Thus we can express our hybrid
algorithm in detail as

i. Initialize k =0, r©® and X©

ii. Minimize ¢(X) using the BFGS method, giving X*) and D®*)

iii. Use (5.3) to calculate A®) from D*)

iv. Redefine D®) = Py, (F + A®) using (5.1) and (5.2)

v. Terminate if Diag(D®) is within tolerance

vi. Set r*+) = A(A®)) where A®) is the eigenvector matrix of F\*).
vii. Initialize X **1 from D®) using (5.4) ff.
viii. Set £k =k + 1 and go to step ii.

An advantage of this approach is that if the rank is not correct, one iteration of the
projection method can quickly give a better estimate. Also *) is nor restricted to
being increased by one, as for the unconstrained algorithm, and can either increase or
decrease. Moreover good approximations of X*) can be made from the matrix D)
obtained by the projection method.

We have evaluated two different versions of this algorithm which differ in respect
of how r(® and X are initialized. In Algorithm 1 we carry out iterations of the
projection method starting with A(® = 0 until

NA®Yy = NA*Dy =15

where s is some pre-selected positive number. This value becomes (@ for step i
above, and X(® is initialized as in (5.4). The choice of s is a compromise between
two effects. If s is small then the rank may not be accurately estimated, but the
number of (expensive) iterations taken in the projection method is small. On the
other hand if s is large then a more accurate rank is obtained but the projection
method needs more iterations. In practice we have found s = 2 to be adequate for
problems in which r is small.

In Algorithm 2, r(© is supplied by the user and X is calculated from F as
indicated in (4.4). This approach avoids the initial sequence of projection iterations,
but works well if the user is able to make a good estimate of the rank, which is often
the case.
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6 Numerical Results

The algorithms have been tested on randomly generated distance matrices F' with val-
ues distributed between 1073 and 10%. A Fortran 77 program has been written, using
the NAG library to compute eigenvalues for the projection method. The computations
are carried out in double precision on a SUN SPARCstation SLC. Table 1 summarizes
the results for the four different approaches, the projection method, the unconstrained
method, and the hybrid Algorithms 1 and 2. The termination criterion for the un-
constrained method is ||D®) — D¢=D|| < 107° and [|A® — A=) < 107°
for the other methods. All four algorithms converge to essentially the same values.
Table 1 shows the comparative results for all methods and Table 2 shows the progress
of Algorithm 2 in more detail. An asterisk indicates where the correct rank has been
identified. In some cases, with Algorithm 1, the final rank is 7* + 1 but the solution
is within the required tolerance.

For the projection algorithm, each iteration involves the matrix product QF®Q,
followed by an eigensolution, which are relatively expensive O(n?) calculations. Thus
the projection algorithm is not competitive. For the other algorithms, the housekeep-
ing associated with each line search is O(n?). Also, if care is taken, it is possible to
calculate ¢(X) and V¢ (X) in O(n?) operations. Thus each line search is much less
expensive than an iteration of the projection method. For the unconstrained algo-
rithm the initial value 7(%) is tabulated, and r is increased by one until the solution
is found. The total number of line searches is tabulated, and within this figure, it
is found that fewer line searches are required as r increases. It can be seen that the
total number of line searches is much greater than is required by the hybrid methods.
Also the initial value r(®) = 6 is rather arbitrary: a smaller value of 7(®) would have
given an even larger number of line searches.

Both hybrid algorithms are seen to be effective. As n increases, Algorithm 1 takes
an increasing number of projection iterations before the rank settles down. We find
it better to increase the value of s as the value of r* increases. Once the projection
iteration has settled down, the BFGS method finds the solution rapidly and no further
projection steps are needed. Algorithm 2 requires a relatively large number of line
searches (see Table 2) in the first call of the BFGS method, after which one projection
step finds the correct rank, and the next call of BFGS finds the solution in a few line
searches. This is because of the good initial starting matrix X given by the projection
method. Because the projection steps in Algorithm 1 are relatively expensive, the
difference in computing time between these algorithms is not very significant.



Fuclidean Distance Matrices

15

PA UA Al A2
n || ] NPT | @ | TNL NV || s| NPI 7 (k) NL || TNL
5 2 | 21 2* 12 8 21 2 2% 7 12
10 || 4| 46 3 80 36 210 2 4* 15 44
15 | 5| 64 4 140 70 31 4 6(5*) 22 76
20 || 7| 101 5 176 133 ||3] 4 7* 18 81
25 || 8 | 85 6 221 192 ||3| 4 8* 14 106
30 || 9| 129 6 144 261 ||3| 4 10(9%) | 19 52
35 || 9| 115 6 382 306 ||4| 8 9* 23 109
40 || 10| 168 6 161 300 (4| 7 |11(10%) | 21 38
45 || 11| 136 6 246 484 4| 9 11* 17 64
50 || 13| 171 6 288 637 |4 7 13* 13 142

Table 1: Comparing four algorithms for the Euclidean distance matrix problem.

PA: The projection algorithm (Section 3).

UA: The unconstrained algorithm (Section 4).
A1l: Hybrid Algorithm 1.

A2: Hybrid Algorithm 2.

NPI: Number of projection iterations.

NL: Number of line searches in the BFGS method.
TNL: Total number of line searches in the unconstrained algorithm.
NV: Maximum number of variables in the unconstrained algorithm.

A2

n r(©) NL (k) NL

in from in

BFGS OPA BFGS

5 2% 12
10 3 33 4* 11
15 4 63 H* 13
20 5 70 e 11
25 6 94 ’* 12
30 6 42 9* 10
35 6 98 9* 11
40 6 22 10* 16
45 6 46 11* 18
50 5 125 13* 17

Table 2: Detailed progress of Algorithm 2.

OPA: One iteration of the projection algorithm.
NL: Number of line searches.
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