
1Hybrid Methods for Finding theNearest Eu
lidean Distan
e MatrixSuliman Al-HomidanDepartment of Mathemati
s, King Saud University, Riyadh 11451, PO Box 4511,Saudi ArabiaRoger Flet
herDepartment of Mathemati
s and Computer S
ien
e, University of Dundee, DundeeDD1 4HN, S
otland, UK.Abstra
tA 
on
ise 
hara
terization is presented for a Eu
lidean distan
e matrix in termsof null-spa
e matri
es, and methods for the solution of the Eu
lidean distan
ematrix problem are 
onsidered. One approa
h (Glunt et al. [8℄) is to formulatethe problem as a 
onstrained least distan
e problem in whi
h the 
onstraint isthe interse
tion of two 
onvex sets. The Dykstra-Han proje
tion algorithm 
anthen be used to solve the problem. This method is globally 
onvergent but therate of 
onvergen
e is slow. However the method does have the 
apability ofdetermining the 
orre
t rank of the solution matrix, and this 
an be done inrelatively few iterations. If the 
orre
t rank of the solution matrix is known, it isshown how to formulate the problem as a smooth un
onstrained minimizationproblem, for whi
h rapid 
onvergen
e 
an be obtained by for example the BFGSmethod. This paper studies hybrid methods that attempt to 
ombine the bestfeatures of both types of method. An important feature 
on
erns the interfa
ingof the 
omponent methods. Thus it has to be de
ided whi
h method to use�rst, and when to swit
h between methods. Also it may not be straightforward,as we shall see here, to use the output of one method to start the other method.DiÆ
ulties su
h as these are addressed in the paper. Comparative numeri
alresults are reported.
1 Introdu
tionSymmetri
 matri
es that have non-negative o�diagonal elements and zero diagonalelements arise as data in many experimental s
ien
es. This o

urs when the values
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herare measurements of squared distan
es between points (e.g. atoms, stars, 
ities) in aEu
lidean spa
e. Su
h a matrix is referred to as a Eu
lidean distan
e matrix. Be
auseof data errors su
h a matrix may not be exa
tly Eu
lidean and it is desirable to �ndthe best Eu
lidean matrix whi
h approximates the non-Eu
lidean matrix. The aimof this paper is to study methods for solving this problem.An important appli
ation arises in the 
onformation of mole
ular stru
tures fromnu
lear magneti
 resonan
e data (see Havel et al. [10℄ and Crippen [4℄, [5℄). Here aEu
lidean distan
e matrix is used to represent the squares of distan
es between theatoms of a mole
ular stru
ture. An attempt to determine su
h a stru
ture by nu
learmagneti
 resonan
e experiments gives rise to a distan
e matrix F whi
h, be
ause ofdata errors, may not be Eu
lidean. There are many other appli
ations in subje
tsas diverse as ar
heology, 
artography, geneti
s, geography and multivariate analysis.Pertinent referen
es are given by Al-Homidan [1℄.Chara
terization theorems for the Eu
lidean distan
e matrix have been given inmany forms over the years. In Se
tion 2 we show that a very 
on
ise form of thisresult 
an be proved in terms of null-spa
e matri
es, that brings out the underlyingstru
ture and is readily appli
able to the algorithms that follow.Many advan
es have taken pla
e in 
onstrained optimization over the last fortyyears or so. There are now e�e
tive methods for situations in whi
h the obje
tiveand 
onstraint fun
tions are smooth fun
tions. Under reasonable assumptions, thesemethods 
an be shown to 
onverge globally (that is from any starting point) to a pointwhi
h satis�es optimality 
onditions for the problems. Also the rate of 
onvergen
e
an often be shown to be superlinear. Some progress has also been made for problemsin whi
h non{smooth fun
tions o

ur. If these fun
tions are a 
omposition of a
onvex polyhedral fun
tion and a smooth fun
tion, then again globally and superlinear
onvergent methods have been suggested. This paper addresses a rather more diÆ
ultnon-smooth optimization problem in whi
h some matrix, de�ned in terms of theproblem variables, has to be positive semi-de�nite. One way to handle this problemis to impose a fun
tional 
onstraint in whi
h the least eigenvalue of the matrix isnon-negative. However, if there are multiple eigenvalues at the solution, whi
h isusually the 
ase, su
h a 
onstraint is non-smooth, and this non-smoothness 
annotbe modelled by a 
onvex polyhedral 
omposite fun
tion. An important fa
tor is thedetermination of the multipli
ity of the zero eigenvalues, or alternatively the rank ofthe matrix at the solution. If this rank is known it is usually possible to solve theproblem by 
onventional te
hniques.One approa
h (Glunt et al. [8℄) is to formulate the Eu
lidean distan
e matrixproblem as a 
onstrained least distan
e problem in whi
h the 
onstraint is the inter-se
tion of two 
onvex sets. The Dykstra-Han alternating proje
tion algorithm 
anthen be used to solve the problem. This idea is outlined in Se
tion 3. This methodis globally 
onvergent but the rate of 
onvergen
e is linear or slower. It is this latterfeature that has probably 
ontributed to the relatively little interest that has beenshown in su
h methods. However the method does have the 
apability of determin-
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es 3ing the 
orre
t rank of the solution matrix, and this 
an be done in relatively fewiterations.If the 
orre
t rank of the solution matrix is known, it is shown in Se
tion 4 how toformulate the problem as a smooth un
onstrained minimization problem, for whi
hrapid 
onvergen
e 
an be obtained by for example the BFGS method. We dis
usshow best to parametrize the problem, and give expressions for the obje
tive fun
tionand its �rst derivatives. A trial and error approa
h to estimating the 
orre
t rank ispossible, but is not very appealing.Thus we are led to study hybrid methods in Se
tion 5 of the paper. The hybridmethod has two di�erent modes of operation. One is a proje
tion method whi
hprovides global 
onvergen
e and enables the 
orre
t rank to be determined. Theother is a quasi-Newton method whi
h enables rapid 
onvergen
e to be obtained. Animportant feature 
on
erns the interfa
ing of these modes of operation. Thus it hasto be de
ided whi
h method to use �rst, and when to swit
h between methods. Alsoit may not be straightforward, as we shall see here, to use the output of one methodto start the other method. DiÆ
ulties su
h as these are addressed in the paper.Numeri
al experiments are reported in Se
tion 6.Re
ently, and sin
e the resear
h in this paper was 
arried out, there has beenmu
h interest in interior point methods applied to problems with semi-de�nite matrix
onstraints (e.g. Alizadeh et al. [2℄). It would 
ertainly be of interest to 
ompare thisapproa
h with the hybrid methods des
ribed in our paper.Throughout this paper the lower 
ase boldfa
e letters su
h as x; y; v are usedto denote ve
tors. Matri
es are denoted by 
apital letters su
h as A; B; C: We usethe notation Diag(A) to denote diag(aii); i = 1; : : : ; n . Supers
ript (k) generallydenotes quantities related to the kth iterate, for example f (k); X(k) et
,. Quantitiesrelating to the solution are supers
ripted with an asterisk, e.g. r�; D�, et
.2 The Eu
lidean Distan
e Matrix ProblemIn this se
tion the de�nition of the Eu
lidean distan
e matrix is given, and the rela-tionship between points and distan
es is summarized. A 
hara
terization theorem forthe Eu
lidean distan
e matrix is proved in a 
on
ise way that brings out the under-lying stru
ture and is readily appli
able to the algorithms that follow. The theoremis essentially due to S
hoenberg [12℄ in the 
ase that p = x1 (see below). Young andHouseholder [13℄ independently obtain a similar result.It is ne
essary to distinguish between distan
e matri
es that are obtained in pra
-ti
e and those that 
an be derived exa
tly from n ve
tors in an aÆne subspa
e.De�nition 2.1. A matrix D 2 IRn�n is 
alled a distan
e matrix i� it is symmetri
,the diagonal elements are zero dii = 0 i = 1; :::; n;
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herand the o�-diagonal entries are non-positivedij � 0 8i 6= j:De�nition 2.2. A matrix D 2 IRn�n is 
alled a Eu
lidean distan
e matrix i� thereexist n points x1; : : : ;xn in an aÆne subspa
e of dimension IRr (r � n� 1) su
hthat dij = �kxi � xjk22 8i; j: (2.1)The negative sign in the de�nition of dij is not 
ommon, but is in
luded to simplifythe subsequent presentation.The Eu
lidean distan
e problem 
an now be stated as follows. Given a distan
ematrix F 2 IRn�n, �nd the Eu
lidean distan
e matrix D 2 IRn�n that minimizeskF �DkF (2.2)where k:kF denotes the Frobenius norm.To determine the dimension of an aÆne subspa
e we need to make a translationinto a subspa
e that 
ontains the origin. Consider ve
tors x1; : : : ;xn in IRm. A ve
torp is said to be a weighted 
ombination of these ve
tors i�p = nXi=1 xiyi; nXi=1 yi = 1:We 
hoose a �xed ve
tor p in this way and examine the displa
ements from p.De�nition 2.3. The ve
tors x1; : : : ;xn are in an aÆne subspa
e of dimension r i�the ve
tors xi � p; i = 1; : : : ; n have rank r.In matrix notation the ve
tors x1; : : : ;xn are 
olumns of an m� n matrix X and we
an express p = Xy for some ve
tor y su
h that eTy = 1 where e = (1; : : : ; 1)T . Thedispla
ement ve
tors xi � p; i = 1; : : : ; n are 
olumns of the matrixX � peT = X �XyeT = XP (2.3)where P = I � yeT (2.4)is a skew proje
tion matrix. Clearly rank(P ) = n � 1 and P Te = 0. A 
onvenient
hoi
e for p is the ve
tor x1, in whi
h 
ase y is the unit ve
tor e1 and P is a matrixwhose �rst 
olumn is the zero ve
tor. Another possibility is to 
hoose the 
entroidp = Xe=n, in whi
h 
ase P be
omes the symmetri
 proje
tion matrix P = I�eeT=n.The ve
tor e is seen to be signi�
ant and we denoteM = fv 2 IRn : vTe = 0gas the null spa
e of e. Let 
olumns of a matrix Z 2 IRn�(n�1) provide a basis for M .Z is 
alled a null-spa
e matrix and is 
hara
terized by rank(Z) = n�1 and ZTe = 0.



Eu
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e Matri
es 5A possible 
hoi
e for Z is the matrix, Zp say, obtained by sele
ting n � 1 linearlyindependent 
olumns from the matrix P in (2.4). De�nition 2.3 is then equivalent tothe statement that rank(XZp) = r and hen
erank(XZ) = r (2.5)for any null-spa
e matrix Z. This stru
ture enables us to 
hara
terize a Eu
lideandistan
e matrix in a 
on
ise way.Theorem 2.1. Let D 2 IRn�n be a symmetri
 matrix with Diag(D) = 0. Then Dis a Eu
lidean distan
e matrix i� D is positive semi-de�nite on M (or equivalentlyZTDZ is positive semi-de�nite). Moreover if rank(ZTDZ) = r then D 
an bederived from ve
tors x1; : : : ;xn in an aÆne subspa
e of dimension r .Proof Let D be a Eu
lidean distan
e matrix whi
h is derived from 
olumns of them� n matrix X. Then[ZTDZ℄ij =Xkl zkidklzlj =Xkl zki(2xTkxl � xTk xk � xTl xl)zljfrom (2.1). The term involvingPkl zkixTk xkzlj 
an be rearranged as (Pk zkixTk xk)Pl zlj,and is zero be
ause ZTe = 0. Likewise the term derived from xTl xl is zero. Thus[ZTDZ℄ij = 2Xkl zkixTk xlzlj = 2Xkql zkixqkxqlzljor in matrix notation ZTDZ = 2ZTXTXZ:Hen
e ZTDZ is positive semi-de�nite. If the 
olumns of X are in an aÆne subspa
eof dimension r then from (2.5) r = rank(XZ) = rank(ZTDZ).Conversely we let D be a symmetri
 matrix su
h that Diag(D) = 0 and ZTDZis positive semi-de�nite of rank r, and we show how to 
onstru
t a matrix X whose
olumns are in an aÆne subspa
e of dimension r su
h that D is derived from X. Wede�ne A = 12P TDP where P is given by (2.4), and 
hoose the matrix Zp above as thenull spa
e matrix. It readily follows thatr = rank(ZTp DZp) = rank(A):[Proof: Sin
e the extra 
olumn in P is a linear 
ombination of the 
olumns of Zp itfollows that rank(ZTp DZp) = rank(ZTp DP ). Likewise we dedu
e that rank(ZTp DP ) =rank(P TDP ).℄ It also follows that A is positive semi-de�nite, so we 
an expressA = XTX (2.6)where X 2 IRr�n and rank(X) = r. Then�kxi � xjk22 = 2xTi xj � xTi xi � xTj xj = 2aij � aii � ajj= pTi Dpj � 12pTi Dpi � 12pTj Dpj (2.7)
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herwhere pi denotes 
olumn i of P . It follows from (2.4) that pi = ei � y. Substitutinginto (2.7) and using dii = 0 yields�kxi � xjk22 = dij:Thus D is derived from X. Moreover yTAy = 0 by de�nition of A and (2.4). Itfollows from (2.6) that kXyk = 0 and hen
e p = Xy = 0. Finally we 
an dedu
efrom rank(X) = r that rank(XP ) = 0, and it follows from (2.3) and De�nition 2.3that the 
olumns of X are in an aÆne subspa
e of dimension r.The spe
ial 
ase in whi
h p = x1, y = e1 and P = I � e1eT is parti
ularlyuseful. The resulting matrix A = 12P TDP has zeros in the �rst row and 
olumn, anda general expression for the remaining elements isaij = 12(dij � d1i � d1j) i � 2; j � 2: (2.8)Then the ve
tors x1; : : : ;xn that are 
onstru
ted from (2.6) are su
h that x1 = 0.Another useful appli
ation of Theorem 2.1 o

urs in the proje
tion algorithm ofSe
tion 3 for whi
h an orthogonal basis for the null spa
e is available.Theorem 2.2. Let Q 2 IRn�n be the Householder matrix given byQ = I � 2wTwwwT ; w = (1; : : : ; 1; 1 +pn)T : (2.9)Then the distan
e matrix D 2 IRn�n is a Eu
lidean distan
e matrix i� the (n� 1)�(n� 1) blo
k D1 in QDQ = �D1 ddT Æ � (2.10)is positive semi-de�nite.Proof Be
ause Q is an othogonal matrix and QTe = en, it follows that the �rst n�1
olumns of Q provide a null spa
e matrix Z. Sin
e D1 = ZTDZ the result 
an bededu
ed from Theorem 2.1.3 The Proje
tion AlgorithmIn this se
tion we des
ribe a proje
tion algorithm due to Glunt et al. [8℄ for solving theEu
lidean distan
e matrix problem (2.2). At the end of the se
tion, a more simple and
exible rearrangement of the algorithm is also given. These algorithms are derivedfrom an alternating proje
tion algorithm due to Dykstra [6℄ for �nding the leastdistan
e from a �xed point to an interse
tion of 
onvex sets. This algorithm is givenindependently by Han [11℄. An important feature is the generation of formulae for
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ertain proje
tion maps that are needed. More ba
kground is given about proje
tionmethods for the Eu
lidean distan
e matrix problem in [1℄.The Dykstra-Han algorithm solves the problemminimize kf � xk2subje
t to x 2 m\i=1Kiwhere the Ki are 
onvex sets in IRn and f is given. The algorithm initializes f0 = fand generates a sequen
e ff (k)g using the iteration formulaf (k+1) = f (k) + Pm(: : : P1(f (k)) : : :)� P1(f (k)): (3.1)Here Pi(f) denotes the l2 proje
tion of f on to Ki, that is the (unique) nearest ve
torto f in Ki. It is shown by Boyle and Dykstra [3℄ that Pi(: : : P1(f (k)) : : :)! x� for anyi � 1. However the sequen
e ff (k)g does not in general 
onverge to x� (see [1℄).In applying this method to the Eu
lidean distan
e matrix problem, it is appropri-ate to use the Frobenius matrix norm, and to express (2.2) asminimize kF �DkFsubje
t to D 2 KM \Kd (3.2)where KM = fA : A 2 IRn�n; AT = A; xTAx � 0 8 x 2Mg (3.3)is a 
onvex 
one, andKd = fA : A 2 IRn�n; AT = A; aii = 0 8 i = 1; : : : ; ng (3.4)is a subspa
e. Clearly from Theorem 2.1, D 2 KM \ Kd if and only if D is aEu
lidean distan
e matrix.To apply algorithm (3.1) we need formulae for the proje
tion maps PM(:) andPd(:), 
orresponding respe
tively to P1(:) and P2(:) in (3.1). These are the maps fromK = fA : A 2 IRn�n; A = ATgon to KM and Kd. Be
ause these proje
tions maintain symmetry, there is no need toimpose the symmetry 
onstraint expli
itly. Sin
e Kd is a subspa
e, Pd is straightfor-wardly de�ned by Pd(F ) = F � Diag(F ); (3.5)that is Pd maps F into the matrix obtained by zeroing the diagonal elements of F .The proje
tion map PM(F ) is determined by �nding the solutionD of the problemminimize kF �DkFsubje
t to D 2 KM : (3.6)
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herIt is 
onvenient to use the orthogonal matrix Q in (2.9) to expressF = Q �F1 ffT � �Q and D = Q �D1 ddT Æ �Q:Then the 
onstraint D 2 KM is equivalent to the 
onstraint that D1 � 0. Sin
ekF �DkF = kQ(F �D)QkF = 



F1 �D1 f � dfT � dT � � Æ 



F ;it follows that kF �DkF is minimized when d = f ; Æ = � and D1 is the solution ofthe problem minimize kF1 �D1kFsubje
t to D1 � 0: (3.7)Using a theorem of Higham [11℄, the solution of (3.7) is given byD1 = U�+UT ; (3.8)where U�UT is the spe
tral de
omposition of F1 and the 
omponents of �+ arede�ned by �+i = max(�i; 0); i = 1; : : : ; n� 1. Together these results givePM(F ) = Q �U�+UT ffT � �Q (3.9)as the required solution of (3.6).We 
an now use the proje
tion maps PM(F ) and Pd(F ) given by (3.9) and (3.5)to implement the Dykstra-Han algorithm (3.1). Given a distan
e matrix F 2 IRn�n,the algorithm is initialized by F (0) = F and the iteration formula isF (k+1) = F (k) + Pd(PM(F (k)))� PM(F (k)): (3.10)This is the form of the algorithm used by Glunt et al. [8℄. The sequen
es fPM(F (k))gand fPd(PM(F (k)))g both 
onverge to the solution D� of (3.2) and hen
e (2.2).We have found it more 
onvenient to use a di�erent form of the algorithm. Byvirtue of (3.5), the iteration formula (3.10) 
an be rearraged asF (k+1) = F (k) � Diag(PM(F (k))): (3.11)The e�e
t of this formula is that it only 
hanges the diagonal elements of F (k). Thissuggests that we iterate with the diagonal matrix�(k) = F (k) � F: (3.12)The iteration formula (3.11) then be
omes�(k+1) = �(k) � Diag(D(k)); (3.13)
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lidean Distan
e Matri
es 9where D(k) = PM(F+�(k)). These matri
esD(k) 
onverge to the solution of (2.2). Anadvantage of this formulation, whi
h we make use of in Se
tion 5, is that the iteration
an be initialized with any diagonal matrix �(0) and not just �(0) = 0. Moreover,given any F (k) (or �(k)), the test Diag(D(k)) = 0 (3.14)determines whether D(k) is a Eu
lidean distan
e matrix or not.4 Solution by Un
onstrained MinimizationIn this se
tion we 
onsider a di�erent approa
h to the Eu
lidean distan
e matrix prob-lem (2.2). The main idea is to repla
e (2.2) by a smooth un
onstrained optimizationproblem in order to use superlinearly 
onvergent quasi-Newton methods. To do thisit is ne
essary to estimate the rank r of the underlying aÆne subspa
e, as this pie
eof information is not generally known. On
e a value of r is 
hosen, the problem (2.2)is solved by the BFGS method. We give the relevant formulae for derivatives. At theend of the se
tion we dis
uss details of initialization and implementation.If the rank r is known, it is possible to express (2.2) as a smooth un
onstrainedoptimization problem in the following way. The unknowns in the problem are 
hosento be the elements of the matrix X introdu
ed in (2.3). We take X to have r rowsand 
hoose the translation p = x1 so that the ve
tor x1 = 0. This gives us anun
onstrained optimization problem in r(n�1) unknowns. We therefore parametrizeX by variables xi; i = 1; : : : ; r(n� 1) in the following wayX = 266664 0 x1 x2 � � � xn�10 xn xn+1 � � � x2(n�1)... ... ...0 x(r�1)(n�1)+1 � � � � � � xr(n�1) 377775 : (4.1)(In fa
t it is possible to parametrize the matrix with 12(r� 1)(r� 2) fewer unknownsby rotating X to be upper trapezoidal. However it is indi
ated in [1℄ that the re-sulting method tends to use more line sear
hes on a sele
tion of randomly generatedproblems.)The obje
tive fun
tion �(X) is readily 
al
ulated by �rst forming D from X asindi
ated by (2.1), after whi
h � is given by �(X) = kD� Fk2F . The elements of thematrix D take the formd11 = 0; di1 = d1i = � r�1Xk=0x2i+km�1 i = 2; : : : ; ndij = dji = � r�1Xk=0(xi+km�1 � xj+km�1)2 i; j = 2; : : : ; n
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herwhere m denotes n� 1. Hen
e�(X) = nXi;j=1(fij � dij)2= 2f nXi=2(fi1 � di1)2 + nXi;j=2i>j (fij � dij)2g= 2f nXi=1(r�1Xk=0x2i+km�1 + fi1)2 +nXi;j=2i>j (r�1Xk=0(xi+km�1 � xj+km�1)2 + fij)2g (4.2)Our 
hosen method to minimize �(X) is the BFGS quasi-Newton method (see forexample [7℄). This requires expressions for the �rst partial derivatives of �, whi
h aregiven from (4.2) by���xs = 8xsfr�1Xk=0x2l+km + fl+1;1g+ 8f mXj=1 [r�1Xk=0(xl+km � xj+km)2 + fl+1;j+1℄(xs � xj+tm)g (4.3)for all s = 1; : : : ; r(n�1) where t = (s�l)=m and l = mod(s;m) and if l = 0 thenl = m. The BFGS method also requires the Hessian approximation to be initialized.Where ne
essary we do this using a unit matrix.Some 
are has to be taken when 
hoosing the initial value of the matrix X, inparti
ular the rank of X must be r. If not the minimization method may not beable to in
rease the rank of X. An extreme 
ase o

urs when the initial matrixX = 0 is 
hosen, and F 6= 0. It 
an be seen from (4.3) that the 
omponents of thegradient ve
tor are all zero, so that X = 0 is a stationary point, but not a minimizer.A gradient method will usually terminate in this situation, and so fail to �nd thesolution.A reliable method for initializing X is to use the 
onstru
tion suggested by (2.8)and (2.6). Thus we de�ne the elements of A from those of F byaij = 12(fij � f1i � f1j) i � 2; j � 2: (4.4)The �rst row and 
olumn of A are zero and are ignored. We then �nd the spe
tralde
omposition U�UT of the nontrivial part of A. Finally the nontrivial part of Xin (4.1) is initialized to the matrix �1=2r UTr where �r = diag(�i); i = 1; : : : ; r is
omposed of the r largest eigenvalues in �, and 
olumns of Ur are the 
orrespondingeigenve
tors. When �r is positive de�nite, this pro
edure ensures that X has rank r.
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es 11Otherwise the pro
ess must be modi�ed in some way, for example by ensuring thatthe diagonal elements in �r lie above a positive threshold.An advantage of the un
onstrained method is that it allows the spatial dimensionsto be 
hosen by the user. This is useful when the rank is already known. For exampleif the entries in F are derived from distan
es between 
ities then the dimension willbe no more than r = 2. Likewise, if the entries are derived from distan
es betweenatoms in a mole
ule or stars in spa
e, then the maximum dimension is r = 3.In general however the rank of the aÆne subspa
e is not known, for example theatoms in a mole
ule may turn out to be 
ollinear or 
oplanar. We therefore must
onsider an algorithm in whi
h we are prepared to revise our estimate of r. A simplestrategy is to repeat the entire un
onstrained method for di�erent values of r. If r�denotes the 
orre
t value of r whi
h solves (2.2), then it is observed in [1℄ that theBFGS method 
onverges rapidly if r � r�, and exhibits superlinear 
onvergen
e. Onthe other hand if r > r� then slow 
onvergen
e is observed. One reason is that thereare more variables in the problem. Also redundan
y in the parameter spa
e mayhave an e�e
t. Thus it makes sense to start with a small value of r, and in
rease itby one until the solution is re
ognised. One way to re
ognise termination is whenD(r) agrees suÆ
iently well with D(r+1), where D(r) denotes the Eu
lidean distan
ematrix obtained by minimizing � when X in (4.1) has r rows. Numeri
al experien
eis reported in [1℄ for solving various test problems by this method.An obvious alternative to using the BFGS method is to evaluate the Hessianmatrix of se
ond derivatives of �(X) and use Newton's method. This would be likelyto redu
e the number of iterations required. However there is also the disadvantageof in
reased 
omplexity, and in
reased housekeeping at ea
h iteration. Moreoverit is possible that the Hessian has some negative eigenvalues so a modi�ed formof Newton's method would be required. A simple example serves to illustrate thepossibility of a negative eigenvalue. Take n = 2, r = 1 and let F = [ 0�1 �10 ℄ andX = [0 x1℄. Then � = 2(1 � x21)2. This has global minimizers at x1 = �1, a lo
almaximizer at x1 = 0, and the Hessian is negative for all x1 su
h that 3x21 < 1.5 Hybrid MethodsThe algorithms of Se
tions 3 and 4 have entirely di�erent features, some good, somebad, whi
h suggests that a 
ombination of both approa
hes might be su

essful.Proje
tion methods are globally 
onvergent and hen
e potentially reliable, but therate of 
onvergen
e is �rst order or slower, whi
h 
an be very ineÆ
ient. Quasi-Newton methods are reliable and lo
ally superlinearly 
onvergent, but require thatthe 
orre
t rank r� is known. We therefore 
onsider hybrid methods in whi
h theproje
tion algorithm is used sparingly as a way of establishing the 
orre
t rank, whilstthe BFGS method is used to provide rapid 
onvergen
e.In order to ensure that ea
h 
omponent method is used to best e�e
t, it is impor-tant to be able to transfer information from one method to the other. In parti
ular a
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herme
hanism must be established so that the result from one method is used to providethe initial data for the other, and vi
e versa. This me
hanism must have a �xed pointproperty, so that if one method �nds the solution, then the other method is initializedwith an iterate that also 
orresponds to a solution. We show in this se
tion how this
an be done.We have already indi
ated at the end of Se
tion 3 how the proje
tion method 
anbe initialized with any diagonal matrix �. However if D(k) is the Eu
lidean distan
ematrix derived from the result matrix X(k) of the BFGS method, it is not obvioushow to 
al
ulate an initial matrix � for the proje
tion method. To address thisdiÆ
ulty, we 
onsider an iteration of the proje
tion method. The 
urrent iterate �(k)determines F (k) = F + �(k) and the produ
t QF (k)Q yields F (k)1 ; f (k) and �(k),where F (k) = Q " F (k)1 f (k)f (k)T � #Q: (5.1)The spe
tral de
omposition F (k)1 = U (k)�(k)U (k)T is 
al
ulated andD(k) is determinedby D(k) = PM(F (k)) = Q �U (k)�(k)+U (k)T f (k)f (k)T �(k) �Q: (5.2)It follows from (5.1) and (5.2) that(D(k) � F (k))e = Q �U (k)(�(k)+ � �(k))U (k)T 00T 0 �Qe = 0;sin
e Qe = en. Setting F (k) = F +�(k) from (3.12) implies that�(k)e = (D(k) � F )e: (5.3)This expression is exa
t for the proje
tion method.Be
ause �(k) is diagonal, (5.3) 
an be used to 
ompute a matrix �(k) from anygiven matrixD(k). In our hybrid algorithm we use this as a way of initializing �(k) forthe proje
tion method, from the D(k) matrix obtained from the BFGS method. If theBFGS method is using the 
orre
t rank r = r� and has found the global solution of�, then D(k) is the solution D� of (2.2). Hen
e (5.3) gives the 
orre
t solution �� forthe proje
tion method. Even if the rank r 6= r� in the BFGS method, (5.3) enablessome useful information to be extra
ted from D(k).Conversely we let D(k) be the matrix obtained in (5.2) by the proje
tion method,and 
onsider how to initializeX for the BFGS method. If D(k) is a Eu
lidean distan
ematrix, then it solves (2.2), and by Theorems 2.1 and 2.2, the 
orre
t rank r� is thenumber of positive eigenvalues in the matrix �(k). We denote this number by N (�(k)).In general, whenD(k) is not a solution, we useN (�(k)) to determine the row dimensionr of X in (4.1) for the BFGS method. To determine the elements of X we again usethe 
onstru
tion suggested by (2.8) and (2.6). Thus we de�ne the elements of A fromthose of D(k) by aij = 12(dij � d1i � d1j) i � 2; j � 2: (5.4)
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es 13The �rst row and 
olumn of A are zero and are ignored. We then �nd the spe
tralde
omposition U�UT of the nontrivial part of A. Finally the nontrivial part of X in(4.1) is initialized to the matrix �1=2r UTr where �r = diag(�i); i = 1; : : : ; r 
ontainsthe r positive eigenvalues of �, and 
olumns of Ur are the 
orresponding eigenve
tors.We have found that it is suÆ
ient to 
arry out only one iteration of the proje
tionmethod between ea
h 
all of the BFGS method. Thus we 
an express our hybridalgorithm in detail asi. Initialize k = 0; r(0) and X(0)ii. Minimize �(X) using the BFGS method, giving X(k) and D(k)iii. Use (5.3) to 
al
ulate �(k) from D(k)iv. Rede�ne D(k) = PM(F +�(k)) using (5.1) and (5.2)v. Terminate if Diag(D(k)) is within toleran
evi. Set r(k+1) = N (�(k)) where �(k) is the eigenve
tor matrix of F (k)1 .vii. Initialize X(k+1) from D(k) using (5.4) �.viii. Set k = k + 1 and go to step ii.An advantage of this approa
h is that if the rank is not 
orre
t, one iteration of theproje
tion method 
an qui
kly give a better estimate. Also r(k) is nor restri
ted tobeing in
reased by one, as for the un
onstrained algorithm, and 
an either in
rease orde
rease. Moreover good approximations of X(k) 
an be made from the matrix D(k)obtained by the proje
tion method.We have evaluated two di�erent versions of this algorithm whi
h di�er in respe
tof how r(0) and X(0) are initialized. In Algorithm 1 we 
arry out iterations of theproje
tion method starting with �(0) = 0 untilN (�(k)) = N (�(k�j)) j = 1; : : : ; swhere s is some pre-sele
ted positive number. This value be
omes r(0) for step iabove, and X(0) is initialized as in (5.4). The 
hoi
e of s is a 
ompromise betweentwo e�e
ts. If s is small then the rank may not be a

urately estimated, but thenumber of (expensive) iterations taken in the proje
tion method is small. On theother hand if s is large then a more a

urate rank is obtained but the proje
tionmethod needs more iterations. In pra
ti
e we have found s = 2 to be adequate forproblems in whi
h r is small.In Algorithm 2, r(0) is supplied by the user and X(0) is 
al
ulated from F asindi
ated in (4.4). This approa
h avoids the initial sequen
e of proje
tion iterations,but works well if the user is able to make a good estimate of the rank, whi
h is oftenthe 
ase.



14 S. Al-Homidan and R. Flet
her6 Numeri
al ResultsThe algorithms have been tested on randomly generated distan
e matri
es F with val-ues distributed between 10�3 and 103. A Fortran 77 program has been written, usingthe NAG library to 
ompute eigenvalues for the proje
tion method. The 
omputationsare 
arried out in double pre
ision on a SUN SPARCstation SLC. Table 1 summarizesthe results for the four di�erent approa
hes, the proje
tion method, the un
onstrainedmethod, and the hybrid Algorithms 1 and 2. The termination 
riterion for the un-
onstrained method is kD(k) � D(k�1)k < 10�5 and k�(k) � �(k�1)k < 10�5for the other methods. All four algorithms 
onverge to essentially the same values.Table 1 shows the 
omparative results for all methods and Table 2 shows the progressof Algorithm 2 in more detail. An asterisk indi
ates where the 
orre
t rank has beenidenti�ed. In some 
ases, with Algorithm 1, the �nal rank is r� + 1 but the solutionis within the required toleran
e.For the proje
tion algorithm, ea
h iteration involves the matrix produ
t QF (k)Q,followed by an eigensolution, whi
h are relatively expensive O(n3) 
al
ulations. Thusthe proje
tion algorithm is not 
ompetitive. For the other algorithms, the housekeep-ing asso
iated with ea
h line sear
h is O(n2). Also, if 
are is taken, it is possible to
al
ulate �(X) and r�(X) in O(n2) operations. Thus ea
h line sear
h is mu
h lessexpensive than an iteration of the proje
tion method. For the un
onstrained algo-rithm the initial value r(0) is tabulated, and r is in
reased by one until the solutionis found. The total number of line sear
hes is tabulated, and within this �gure, itis found that fewer line sear
hes are required as r in
reases. It 
an be seen that thetotal number of line sear
hes is mu
h greater than is required by the hybrid methods.Also the initial value r(0) = 6 is rather arbitrary: a smaller value of r(0) would havegiven an even larger number of line sear
hes.Both hybrid algorithms are seen to be e�e
tive. As n in
reases, Algorithm 1 takesan in
reasing number of proje
tion iterations before the rank settles down. We �ndit better to in
rease the value of s as the value of r� in
reases. On
e the proje
tioniteration has settled down, the BFGS method �nds the solution rapidly and no furtherproje
tion steps are needed. Algorithm 2 requires a relatively large number of linesear
hes (see Table 2) in the �rst 
all of the BFGS method, after whi
h one proje
tionstep �nds the 
orre
t rank, and the next 
all of BFGS �nds the solution in a few linesear
hes. This is be
ause of the good initial starting matrixX given by the proje
tionmethod. Be
ause the proje
tion steps in Algorithm 1 are relatively expensive, thedi�eren
e in 
omputing time between these algorithms is not very signi�
ant.
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es 15PA UA A1 A2n r� NPI r(0) TNL NV s NPI r(k) NL TNL5 2 21 2� 12 8 2 2 2� 7 1210 4 46 3 80 36 2 2 4� 15 4415 5 64 4 140 70 3 4 6(5�) 22 7620 7 101 5 176 133 3 4 7� 18 8125 8 85 6 221 192 3 4 8� 14 10630 9 129 6 144 261 3 4 10(9�) 19 5235 9 115 6 382 306 4 8 9� 23 10940 10 168 6 161 390 4 7 11(10�) 21 3845 11 136 6 246 484 4 9 11� 17 6450 13 171 6 288 637 4 7 13� 13 142Table 1: Comparing four algorithms for the Eu
lidean distan
e matrix problem.PA: The proje
tion algorithm (Se
tion 3).UA: The un
onstrained algorithm (Se
tion 4).A1: Hybrid Algorithm 1.A2: Hybrid Algorithm 2.NPI: Number of proje
tion iterations.NL: Number of line sear
hes in the BFGS method.TNL: Total number of line sear
hes in the un
onstrained algorithm.NV: Maximum number of variables in the un
onstrained algorithm.A2n r(0) NL r(k) NLin from inBFGS OPA BFGS5 2� 1210 3 33 4� 1115 4 63 5� 1320 5 70 7� 1125 6 94 8� 1230 6 42 9� 1035 6 98 9� 1140 6 22 10� 1645 6 46 11� 1850 5 125 13� 17Table 2: Detailed progress of Algorithm 2.OPA: One iteration of the proje
tion algorithm.NL: Number of line sear
hes.
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