
1Hybrid Methods for Finding theNearest Eulidean Distane MatrixSuliman Al-HomidanDepartment of Mathematis, King Saud University, Riyadh 11451, PO Box 4511,Saudi ArabiaRoger FletherDepartment of Mathematis and Computer Siene, University of Dundee, DundeeDD1 4HN, Sotland, UK.AbstratA onise haraterization is presented for a Eulidean distane matrix in termsof null-spae matries, and methods for the solution of the Eulidean distanematrix problem are onsidered. One approah (Glunt et al. [8℄) is to formulatethe problem as a onstrained least distane problem in whih the onstraint isthe intersetion of two onvex sets. The Dykstra-Han projetion algorithm anthen be used to solve the problem. This method is globally onvergent but therate of onvergene is slow. However the method does have the apability ofdetermining the orret rank of the solution matrix, and this an be done inrelatively few iterations. If the orret rank of the solution matrix is known, it isshown how to formulate the problem as a smooth unonstrained minimizationproblem, for whih rapid onvergene an be obtained by for example the BFGSmethod. This paper studies hybrid methods that attempt to ombine the bestfeatures of both types of method. An important feature onerns the interfaingof the omponent methods. Thus it has to be deided whih method to use�rst, and when to swith between methods. Also it may not be straightforward,as we shall see here, to use the output of one method to start the other method.DiÆulties suh as these are addressed in the paper. Comparative numerialresults are reported.
1 IntrodutionSymmetri matries that have non-negative o�diagonal elements and zero diagonalelements arise as data in many experimental sienes. This ours when the values



2 S. Al-Homidan and R. Fletherare measurements of squared distanes between points (e.g. atoms, stars, ities) in aEulidean spae. Suh a matrix is referred to as a Eulidean distane matrix. Beauseof data errors suh a matrix may not be exatly Eulidean and it is desirable to �ndthe best Eulidean matrix whih approximates the non-Eulidean matrix. The aimof this paper is to study methods for solving this problem.An important appliation arises in the onformation of moleular strutures fromnulear magneti resonane data (see Havel et al. [10℄ and Crippen [4℄, [5℄). Here aEulidean distane matrix is used to represent the squares of distanes between theatoms of a moleular struture. An attempt to determine suh a struture by nulearmagneti resonane experiments gives rise to a distane matrix F whih, beause ofdata errors, may not be Eulidean. There are many other appliations in subjetsas diverse as arheology, artography, genetis, geography and multivariate analysis.Pertinent referenes are given by Al-Homidan [1℄.Charaterization theorems for the Eulidean distane matrix have been given inmany forms over the years. In Setion 2 we show that a very onise form of thisresult an be proved in terms of null-spae matries, that brings out the underlyingstruture and is readily appliable to the algorithms that follow.Many advanes have taken plae in onstrained optimization over the last fortyyears or so. There are now e�etive methods for situations in whih the objetiveand onstraint funtions are smooth funtions. Under reasonable assumptions, thesemethods an be shown to onverge globally (that is from any starting point) to a pointwhih satis�es optimality onditions for the problems. Also the rate of onvergenean often be shown to be superlinear. Some progress has also been made for problemsin whih non{smooth funtions our. If these funtions are a omposition of aonvex polyhedral funtion and a smooth funtion, then again globally and superlinearonvergent methods have been suggested. This paper addresses a rather more diÆultnon-smooth optimization problem in whih some matrix, de�ned in terms of theproblem variables, has to be positive semi-de�nite. One way to handle this problemis to impose a funtional onstraint in whih the least eigenvalue of the matrix isnon-negative. However, if there are multiple eigenvalues at the solution, whih isusually the ase, suh a onstraint is non-smooth, and this non-smoothness annotbe modelled by a onvex polyhedral omposite funtion. An important fator is thedetermination of the multipliity of the zero eigenvalues, or alternatively the rank ofthe matrix at the solution. If this rank is known it is usually possible to solve theproblem by onventional tehniques.One approah (Glunt et al. [8℄) is to formulate the Eulidean distane matrixproblem as a onstrained least distane problem in whih the onstraint is the inter-setion of two onvex sets. The Dykstra-Han alternating projetion algorithm anthen be used to solve the problem. This idea is outlined in Setion 3. This methodis globally onvergent but the rate of onvergene is linear or slower. It is this latterfeature that has probably ontributed to the relatively little interest that has beenshown in suh methods. However the method does have the apability of determin-



Eulidean Distane Matries 3ing the orret rank of the solution matrix, and this an be done in relatively fewiterations.If the orret rank of the solution matrix is known, it is shown in Setion 4 how toformulate the problem as a smooth unonstrained minimization problem, for whihrapid onvergene an be obtained by for example the BFGS method. We disusshow best to parametrize the problem, and give expressions for the objetive funtionand its �rst derivatives. A trial and error approah to estimating the orret rank ispossible, but is not very appealing.Thus we are led to study hybrid methods in Setion 5 of the paper. The hybridmethod has two di�erent modes of operation. One is a projetion method whihprovides global onvergene and enables the orret rank to be determined. Theother is a quasi-Newton method whih enables rapid onvergene to be obtained. Animportant feature onerns the interfaing of these modes of operation. Thus it hasto be deided whih method to use �rst, and when to swith between methods. Alsoit may not be straightforward, as we shall see here, to use the output of one methodto start the other method. DiÆulties suh as these are addressed in the paper.Numerial experiments are reported in Setion 6.Reently, and sine the researh in this paper was arried out, there has beenmuh interest in interior point methods applied to problems with semi-de�nite matrixonstraints (e.g. Alizadeh et al. [2℄). It would ertainly be of interest to ompare thisapproah with the hybrid methods desribed in our paper.Throughout this paper the lower ase boldfae letters suh as x; y; v are usedto denote vetors. Matries are denoted by apital letters suh as A; B; C: We usethe notation Diag(A) to denote diag(aii); i = 1; : : : ; n . Supersript (k) generallydenotes quantities related to the kth iterate, for example f (k); X(k) et,. Quantitiesrelating to the solution are supersripted with an asterisk, e.g. r�; D�, et.2 The Eulidean Distane Matrix ProblemIn this setion the de�nition of the Eulidean distane matrix is given, and the rela-tionship between points and distanes is summarized. A haraterization theorem forthe Eulidean distane matrix is proved in a onise way that brings out the under-lying struture and is readily appliable to the algorithms that follow. The theoremis essentially due to Shoenberg [12℄ in the ase that p = x1 (see below). Young andHouseholder [13℄ independently obtain a similar result.It is neessary to distinguish between distane matries that are obtained in pra-tie and those that an be derived exatly from n vetors in an aÆne subspae.De�nition 2.1. A matrix D 2 IRn�n is alled a distane matrix i� it is symmetri,the diagonal elements are zero dii = 0 i = 1; :::; n;



4 S. Al-Homidan and R. Fletherand the o�-diagonal entries are non-positivedij � 0 8i 6= j:De�nition 2.2. A matrix D 2 IRn�n is alled a Eulidean distane matrix i� thereexist n points x1; : : : ;xn in an aÆne subspae of dimension IRr (r � n� 1) suhthat dij = �kxi � xjk22 8i; j: (2.1)The negative sign in the de�nition of dij is not ommon, but is inluded to simplifythe subsequent presentation.The Eulidean distane problem an now be stated as follows. Given a distanematrix F 2 IRn�n, �nd the Eulidean distane matrix D 2 IRn�n that minimizeskF �DkF (2.2)where k:kF denotes the Frobenius norm.To determine the dimension of an aÆne subspae we need to make a translationinto a subspae that ontains the origin. Consider vetors x1; : : : ;xn in IRm. A vetorp is said to be a weighted ombination of these vetors i�p = nXi=1 xiyi; nXi=1 yi = 1:We hoose a �xed vetor p in this way and examine the displaements from p.De�nition 2.3. The vetors x1; : : : ;xn are in an aÆne subspae of dimension r i�the vetors xi � p; i = 1; : : : ; n have rank r.In matrix notation the vetors x1; : : : ;xn are olumns of an m� n matrix X and wean express p = Xy for some vetor y suh that eTy = 1 where e = (1; : : : ; 1)T . Thedisplaement vetors xi � p; i = 1; : : : ; n are olumns of the matrixX � peT = X �XyeT = XP (2.3)where P = I � yeT (2.4)is a skew projetion matrix. Clearly rank(P ) = n � 1 and P Te = 0. A onvenienthoie for p is the vetor x1, in whih ase y is the unit vetor e1 and P is a matrixwhose �rst olumn is the zero vetor. Another possibility is to hoose the entroidp = Xe=n, in whih ase P beomes the symmetri projetion matrix P = I�eeT=n.The vetor e is seen to be signi�ant and we denoteM = fv 2 IRn : vTe = 0gas the null spae of e. Let olumns of a matrix Z 2 IRn�(n�1) provide a basis for M .Z is alled a null-spae matrix and is haraterized by rank(Z) = n�1 and ZTe = 0.



Eulidean Distane Matries 5A possible hoie for Z is the matrix, Zp say, obtained by seleting n � 1 linearlyindependent olumns from the matrix P in (2.4). De�nition 2.3 is then equivalent tothe statement that rank(XZp) = r and henerank(XZ) = r (2.5)for any null-spae matrix Z. This struture enables us to haraterize a Eulideandistane matrix in a onise way.Theorem 2.1. Let D 2 IRn�n be a symmetri matrix with Diag(D) = 0. Then Dis a Eulidean distane matrix i� D is positive semi-de�nite on M (or equivalentlyZTDZ is positive semi-de�nite). Moreover if rank(ZTDZ) = r then D an bederived from vetors x1; : : : ;xn in an aÆne subspae of dimension r .Proof Let D be a Eulidean distane matrix whih is derived from olumns of them� n matrix X. Then[ZTDZ℄ij =Xkl zkidklzlj =Xkl zki(2xTkxl � xTk xk � xTl xl)zljfrom (2.1). The term involvingPkl zkixTk xkzlj an be rearranged as (Pk zkixTk xk)Pl zlj,and is zero beause ZTe = 0. Likewise the term derived from xTl xl is zero. Thus[ZTDZ℄ij = 2Xkl zkixTk xlzlj = 2Xkql zkixqkxqlzljor in matrix notation ZTDZ = 2ZTXTXZ:Hene ZTDZ is positive semi-de�nite. If the olumns of X are in an aÆne subspaeof dimension r then from (2.5) r = rank(XZ) = rank(ZTDZ).Conversely we let D be a symmetri matrix suh that Diag(D) = 0 and ZTDZis positive semi-de�nite of rank r, and we show how to onstrut a matrix X whoseolumns are in an aÆne subspae of dimension r suh that D is derived from X. Wede�ne A = 12P TDP where P is given by (2.4), and hoose the matrix Zp above as thenull spae matrix. It readily follows thatr = rank(ZTp DZp) = rank(A):[Proof: Sine the extra olumn in P is a linear ombination of the olumns of Zp itfollows that rank(ZTp DZp) = rank(ZTp DP ). Likewise we dedue that rank(ZTp DP ) =rank(P TDP ).℄ It also follows that A is positive semi-de�nite, so we an expressA = XTX (2.6)where X 2 IRr�n and rank(X) = r. Then�kxi � xjk22 = 2xTi xj � xTi xi � xTj xj = 2aij � aii � ajj= pTi Dpj � 12pTi Dpi � 12pTj Dpj (2.7)



6 S. Al-Homidan and R. Fletherwhere pi denotes olumn i of P . It follows from (2.4) that pi = ei � y. Substitutinginto (2.7) and using dii = 0 yields�kxi � xjk22 = dij:Thus D is derived from X. Moreover yTAy = 0 by de�nition of A and (2.4). Itfollows from (2.6) that kXyk = 0 and hene p = Xy = 0. Finally we an deduefrom rank(X) = r that rank(XP ) = 0, and it follows from (2.3) and De�nition 2.3that the olumns of X are in an aÆne subspae of dimension r.The speial ase in whih p = x1, y = e1 and P = I � e1eT is partiularlyuseful. The resulting matrix A = 12P TDP has zeros in the �rst row and olumn, anda general expression for the remaining elements isaij = 12(dij � d1i � d1j) i � 2; j � 2: (2.8)Then the vetors x1; : : : ;xn that are onstruted from (2.6) are suh that x1 = 0.Another useful appliation of Theorem 2.1 ours in the projetion algorithm ofSetion 3 for whih an orthogonal basis for the null spae is available.Theorem 2.2. Let Q 2 IRn�n be the Householder matrix given byQ = I � 2wTwwwT ; w = (1; : : : ; 1; 1 +pn)T : (2.9)Then the distane matrix D 2 IRn�n is a Eulidean distane matrix i� the (n� 1)�(n� 1) blok D1 in QDQ = �D1 ddT Æ � (2.10)is positive semi-de�nite.Proof Beause Q is an othogonal matrix and QTe = en, it follows that the �rst n�1olumns of Q provide a null spae matrix Z. Sine D1 = ZTDZ the result an bededued from Theorem 2.1.3 The Projetion AlgorithmIn this setion we desribe a projetion algorithm due to Glunt et al. [8℄ for solving theEulidean distane matrix problem (2.2). At the end of the setion, a more simple andexible rearrangement of the algorithm is also given. These algorithms are derivedfrom an alternating projetion algorithm due to Dykstra [6℄ for �nding the leastdistane from a �xed point to an intersetion of onvex sets. This algorithm is givenindependently by Han [11℄. An important feature is the generation of formulae for



Eulidean Distane Matries 7ertain projetion maps that are needed. More bakground is given about projetionmethods for the Eulidean distane matrix problem in [1℄.The Dykstra-Han algorithm solves the problemminimize kf � xk2subjet to x 2 m\i=1Kiwhere the Ki are onvex sets in IRn and f is given. The algorithm initializes f0 = fand generates a sequene ff (k)g using the iteration formulaf (k+1) = f (k) + Pm(: : : P1(f (k)) : : :)� P1(f (k)): (3.1)Here Pi(f) denotes the l2 projetion of f on to Ki, that is the (unique) nearest vetorto f in Ki. It is shown by Boyle and Dykstra [3℄ that Pi(: : : P1(f (k)) : : :)! x� for anyi � 1. However the sequene ff (k)g does not in general onverge to x� (see [1℄).In applying this method to the Eulidean distane matrix problem, it is appropri-ate to use the Frobenius matrix norm, and to express (2.2) asminimize kF �DkFsubjet to D 2 KM \Kd (3.2)where KM = fA : A 2 IRn�n; AT = A; xTAx � 0 8 x 2Mg (3.3)is a onvex one, andKd = fA : A 2 IRn�n; AT = A; aii = 0 8 i = 1; : : : ; ng (3.4)is a subspae. Clearly from Theorem 2.1, D 2 KM \ Kd if and only if D is aEulidean distane matrix.To apply algorithm (3.1) we need formulae for the projetion maps PM(:) andPd(:), orresponding respetively to P1(:) and P2(:) in (3.1). These are the maps fromK = fA : A 2 IRn�n; A = ATgon to KM and Kd. Beause these projetions maintain symmetry, there is no need toimpose the symmetry onstraint expliitly. Sine Kd is a subspae, Pd is straightfor-wardly de�ned by Pd(F ) = F � Diag(F ); (3.5)that is Pd maps F into the matrix obtained by zeroing the diagonal elements of F .The projetion map PM(F ) is determined by �nding the solutionD of the problemminimize kF �DkFsubjet to D 2 KM : (3.6)



8 S. Al-Homidan and R. FletherIt is onvenient to use the orthogonal matrix Q in (2.9) to expressF = Q �F1 ffT � �Q and D = Q �D1 ddT Æ �Q:Then the onstraint D 2 KM is equivalent to the onstraint that D1 � 0. SinekF �DkF = kQ(F �D)QkF = F1 �D1 f � dfT � dT � � Æ F ;it follows that kF �DkF is minimized when d = f ; Æ = � and D1 is the solution ofthe problem minimize kF1 �D1kFsubjet to D1 � 0: (3.7)Using a theorem of Higham [11℄, the solution of (3.7) is given byD1 = U�+UT ; (3.8)where U�UT is the spetral deomposition of F1 and the omponents of �+ arede�ned by �+i = max(�i; 0); i = 1; : : : ; n� 1. Together these results givePM(F ) = Q �U�+UT ffT � �Q (3.9)as the required solution of (3.6).We an now use the projetion maps PM(F ) and Pd(F ) given by (3.9) and (3.5)to implement the Dykstra-Han algorithm (3.1). Given a distane matrix F 2 IRn�n,the algorithm is initialized by F (0) = F and the iteration formula isF (k+1) = F (k) + Pd(PM(F (k)))� PM(F (k)): (3.10)This is the form of the algorithm used by Glunt et al. [8℄. The sequenes fPM(F (k))gand fPd(PM(F (k)))g both onverge to the solution D� of (3.2) and hene (2.2).We have found it more onvenient to use a di�erent form of the algorithm. Byvirtue of (3.5), the iteration formula (3.10) an be rearraged asF (k+1) = F (k) � Diag(PM(F (k))): (3.11)The e�et of this formula is that it only hanges the diagonal elements of F (k). Thissuggests that we iterate with the diagonal matrix�(k) = F (k) � F: (3.12)The iteration formula (3.11) then beomes�(k+1) = �(k) � Diag(D(k)); (3.13)



Eulidean Distane Matries 9where D(k) = PM(F+�(k)). These matriesD(k) onverge to the solution of (2.2). Anadvantage of this formulation, whih we make use of in Setion 5, is that the iterationan be initialized with any diagonal matrix �(0) and not just �(0) = 0. Moreover,given any F (k) (or �(k)), the test Diag(D(k)) = 0 (3.14)determines whether D(k) is a Eulidean distane matrix or not.4 Solution by Unonstrained MinimizationIn this setion we onsider a di�erent approah to the Eulidean distane matrix prob-lem (2.2). The main idea is to replae (2.2) by a smooth unonstrained optimizationproblem in order to use superlinearly onvergent quasi-Newton methods. To do thisit is neessary to estimate the rank r of the underlying aÆne subspae, as this pieeof information is not generally known. One a value of r is hosen, the problem (2.2)is solved by the BFGS method. We give the relevant formulae for derivatives. At theend of the setion we disuss details of initialization and implementation.If the rank r is known, it is possible to express (2.2) as a smooth unonstrainedoptimization problem in the following way. The unknowns in the problem are hosento be the elements of the matrix X introdued in (2.3). We take X to have r rowsand hoose the translation p = x1 so that the vetor x1 = 0. This gives us anunonstrained optimization problem in r(n�1) unknowns. We therefore parametrizeX by variables xi; i = 1; : : : ; r(n� 1) in the following wayX = 266664 0 x1 x2 � � � xn�10 xn xn+1 � � � x2(n�1)... ... ...0 x(r�1)(n�1)+1 � � � � � � xr(n�1) 377775 : (4.1)(In fat it is possible to parametrize the matrix with 12(r� 1)(r� 2) fewer unknownsby rotating X to be upper trapezoidal. However it is indiated in [1℄ that the re-sulting method tends to use more line searhes on a seletion of randomly generatedproblems.)The objetive funtion �(X) is readily alulated by �rst forming D from X asindiated by (2.1), after whih � is given by �(X) = kD� Fk2F . The elements of thematrix D take the formd11 = 0; di1 = d1i = � r�1Xk=0x2i+km�1 i = 2; : : : ; ndij = dji = � r�1Xk=0(xi+km�1 � xj+km�1)2 i; j = 2; : : : ; n



10 S. Al-Homidan and R. Fletherwhere m denotes n� 1. Hene�(X) = nXi;j=1(fij � dij)2= 2f nXi=2(fi1 � di1)2 + nXi;j=2i>j (fij � dij)2g= 2f nXi=1(r�1Xk=0x2i+km�1 + fi1)2 +nXi;j=2i>j (r�1Xk=0(xi+km�1 � xj+km�1)2 + fij)2g (4.2)Our hosen method to minimize �(X) is the BFGS quasi-Newton method (see forexample [7℄). This requires expressions for the �rst partial derivatives of �, whih aregiven from (4.2) by���xs = 8xsfr�1Xk=0x2l+km + fl+1;1g+ 8f mXj=1 [r�1Xk=0(xl+km � xj+km)2 + fl+1;j+1℄(xs � xj+tm)g (4.3)for all s = 1; : : : ; r(n�1) where t = (s�l)=m and l = mod(s;m) and if l = 0 thenl = m. The BFGS method also requires the Hessian approximation to be initialized.Where neessary we do this using a unit matrix.Some are has to be taken when hoosing the initial value of the matrix X, inpartiular the rank of X must be r. If not the minimization method may not beable to inrease the rank of X. An extreme ase ours when the initial matrixX = 0 is hosen, and F 6= 0. It an be seen from (4.3) that the omponents of thegradient vetor are all zero, so that X = 0 is a stationary point, but not a minimizer.A gradient method will usually terminate in this situation, and so fail to �nd thesolution.A reliable method for initializing X is to use the onstrution suggested by (2.8)and (2.6). Thus we de�ne the elements of A from those of F byaij = 12(fij � f1i � f1j) i � 2; j � 2: (4.4)The �rst row and olumn of A are zero and are ignored. We then �nd the spetraldeomposition U�UT of the nontrivial part of A. Finally the nontrivial part of Xin (4.1) is initialized to the matrix �1=2r UTr where �r = diag(�i); i = 1; : : : ; r isomposed of the r largest eigenvalues in �, and olumns of Ur are the orrespondingeigenvetors. When �r is positive de�nite, this proedure ensures that X has rank r.



Eulidean Distane Matries 11Otherwise the proess must be modi�ed in some way, for example by ensuring thatthe diagonal elements in �r lie above a positive threshold.An advantage of the unonstrained method is that it allows the spatial dimensionsto be hosen by the user. This is useful when the rank is already known. For exampleif the entries in F are derived from distanes between ities then the dimension willbe no more than r = 2. Likewise, if the entries are derived from distanes betweenatoms in a moleule or stars in spae, then the maximum dimension is r = 3.In general however the rank of the aÆne subspae is not known, for example theatoms in a moleule may turn out to be ollinear or oplanar. We therefore mustonsider an algorithm in whih we are prepared to revise our estimate of r. A simplestrategy is to repeat the entire unonstrained method for di�erent values of r. If r�denotes the orret value of r whih solves (2.2), then it is observed in [1℄ that theBFGS method onverges rapidly if r � r�, and exhibits superlinear onvergene. Onthe other hand if r > r� then slow onvergene is observed. One reason is that thereare more variables in the problem. Also redundany in the parameter spae mayhave an e�et. Thus it makes sense to start with a small value of r, and inrease itby one until the solution is reognised. One way to reognise termination is whenD(r) agrees suÆiently well with D(r+1), where D(r) denotes the Eulidean distanematrix obtained by minimizing � when X in (4.1) has r rows. Numerial experieneis reported in [1℄ for solving various test problems by this method.An obvious alternative to using the BFGS method is to evaluate the Hessianmatrix of seond derivatives of �(X) and use Newton's method. This would be likelyto redue the number of iterations required. However there is also the disadvantageof inreased omplexity, and inreased housekeeping at eah iteration. Moreoverit is possible that the Hessian has some negative eigenvalues so a modi�ed formof Newton's method would be required. A simple example serves to illustrate thepossibility of a negative eigenvalue. Take n = 2, r = 1 and let F = [ 0�1 �10 ℄ andX = [0 x1℄. Then � = 2(1 � x21)2. This has global minimizers at x1 = �1, a loalmaximizer at x1 = 0, and the Hessian is negative for all x1 suh that 3x21 < 1.5 Hybrid MethodsThe algorithms of Setions 3 and 4 have entirely di�erent features, some good, somebad, whih suggests that a ombination of both approahes might be suessful.Projetion methods are globally onvergent and hene potentially reliable, but therate of onvergene is �rst order or slower, whih an be very ineÆient. Quasi-Newton methods are reliable and loally superlinearly onvergent, but require thatthe orret rank r� is known. We therefore onsider hybrid methods in whih theprojetion algorithm is used sparingly as a way of establishing the orret rank, whilstthe BFGS method is used to provide rapid onvergene.In order to ensure that eah omponent method is used to best e�et, it is impor-tant to be able to transfer information from one method to the other. In partiular a



12 S. Al-Homidan and R. Flethermehanism must be established so that the result from one method is used to providethe initial data for the other, and vie versa. This mehanism must have a �xed pointproperty, so that if one method �nds the solution, then the other method is initializedwith an iterate that also orresponds to a solution. We show in this setion how thisan be done.We have already indiated at the end of Setion 3 how the projetion method anbe initialized with any diagonal matrix �. However if D(k) is the Eulidean distanematrix derived from the result matrix X(k) of the BFGS method, it is not obvioushow to alulate an initial matrix � for the projetion method. To address thisdiÆulty, we onsider an iteration of the projetion method. The urrent iterate �(k)determines F (k) = F + �(k) and the produt QF (k)Q yields F (k)1 ; f (k) and �(k),where F (k) = Q " F (k)1 f (k)f (k)T � #Q: (5.1)The spetral deomposition F (k)1 = U (k)�(k)U (k)T is alulated andD(k) is determinedby D(k) = PM(F (k)) = Q �U (k)�(k)+U (k)T f (k)f (k)T �(k) �Q: (5.2)It follows from (5.1) and (5.2) that(D(k) � F (k))e = Q �U (k)(�(k)+ � �(k))U (k)T 00T 0 �Qe = 0;sine Qe = en. Setting F (k) = F +�(k) from (3.12) implies that�(k)e = (D(k) � F )e: (5.3)This expression is exat for the projetion method.Beause �(k) is diagonal, (5.3) an be used to ompute a matrix �(k) from anygiven matrixD(k). In our hybrid algorithm we use this as a way of initializing �(k) forthe projetion method, from the D(k) matrix obtained from the BFGS method. If theBFGS method is using the orret rank r = r� and has found the global solution of�, then D(k) is the solution D� of (2.2). Hene (5.3) gives the orret solution �� forthe projetion method. Even if the rank r 6= r� in the BFGS method, (5.3) enablessome useful information to be extrated from D(k).Conversely we let D(k) be the matrix obtained in (5.2) by the projetion method,and onsider how to initializeX for the BFGS method. If D(k) is a Eulidean distanematrix, then it solves (2.2), and by Theorems 2.1 and 2.2, the orret rank r� is thenumber of positive eigenvalues in the matrix �(k). We denote this number by N (�(k)).In general, whenD(k) is not a solution, we useN (�(k)) to determine the row dimensionr of X in (4.1) for the BFGS method. To determine the elements of X we again usethe onstrution suggested by (2.8) and (2.6). Thus we de�ne the elements of A fromthose of D(k) by aij = 12(dij � d1i � d1j) i � 2; j � 2: (5.4)



Eulidean Distane Matries 13The �rst row and olumn of A are zero and are ignored. We then �nd the spetraldeomposition U�UT of the nontrivial part of A. Finally the nontrivial part of X in(4.1) is initialized to the matrix �1=2r UTr where �r = diag(�i); i = 1; : : : ; r ontainsthe r positive eigenvalues of �, and olumns of Ur are the orresponding eigenvetors.We have found that it is suÆient to arry out only one iteration of the projetionmethod between eah all of the BFGS method. Thus we an express our hybridalgorithm in detail asi. Initialize k = 0; r(0) and X(0)ii. Minimize �(X) using the BFGS method, giving X(k) and D(k)iii. Use (5.3) to alulate �(k) from D(k)iv. Rede�ne D(k) = PM(F +�(k)) using (5.1) and (5.2)v. Terminate if Diag(D(k)) is within toleranevi. Set r(k+1) = N (�(k)) where �(k) is the eigenvetor matrix of F (k)1 .vii. Initialize X(k+1) from D(k) using (5.4) �.viii. Set k = k + 1 and go to step ii.An advantage of this approah is that if the rank is not orret, one iteration of theprojetion method an quikly give a better estimate. Also r(k) is nor restrited tobeing inreased by one, as for the unonstrained algorithm, and an either inrease orderease. Moreover good approximations of X(k) an be made from the matrix D(k)obtained by the projetion method.We have evaluated two di�erent versions of this algorithm whih di�er in respetof how r(0) and X(0) are initialized. In Algorithm 1 we arry out iterations of theprojetion method starting with �(0) = 0 untilN (�(k)) = N (�(k�j)) j = 1; : : : ; swhere s is some pre-seleted positive number. This value beomes r(0) for step iabove, and X(0) is initialized as in (5.4). The hoie of s is a ompromise betweentwo e�ets. If s is small then the rank may not be aurately estimated, but thenumber of (expensive) iterations taken in the projetion method is small. On theother hand if s is large then a more aurate rank is obtained but the projetionmethod needs more iterations. In pratie we have found s = 2 to be adequate forproblems in whih r is small.In Algorithm 2, r(0) is supplied by the user and X(0) is alulated from F asindiated in (4.4). This approah avoids the initial sequene of projetion iterations,but works well if the user is able to make a good estimate of the rank, whih is oftenthe ase.



14 S. Al-Homidan and R. Flether6 Numerial ResultsThe algorithms have been tested on randomly generated distane matries F with val-ues distributed between 10�3 and 103. A Fortran 77 program has been written, usingthe NAG library to ompute eigenvalues for the projetion method. The omputationsare arried out in double preision on a SUN SPARCstation SLC. Table 1 summarizesthe results for the four di�erent approahes, the projetion method, the unonstrainedmethod, and the hybrid Algorithms 1 and 2. The termination riterion for the un-onstrained method is kD(k) � D(k�1)k < 10�5 and k�(k) � �(k�1)k < 10�5for the other methods. All four algorithms onverge to essentially the same values.Table 1 shows the omparative results for all methods and Table 2 shows the progressof Algorithm 2 in more detail. An asterisk indiates where the orret rank has beenidenti�ed. In some ases, with Algorithm 1, the �nal rank is r� + 1 but the solutionis within the required tolerane.For the projetion algorithm, eah iteration involves the matrix produt QF (k)Q,followed by an eigensolution, whih are relatively expensive O(n3) alulations. Thusthe projetion algorithm is not ompetitive. For the other algorithms, the housekeep-ing assoiated with eah line searh is O(n2). Also, if are is taken, it is possible toalulate �(X) and r�(X) in O(n2) operations. Thus eah line searh is muh lessexpensive than an iteration of the projetion method. For the unonstrained algo-rithm the initial value r(0) is tabulated, and r is inreased by one until the solutionis found. The total number of line searhes is tabulated, and within this �gure, itis found that fewer line searhes are required as r inreases. It an be seen that thetotal number of line searhes is muh greater than is required by the hybrid methods.Also the initial value r(0) = 6 is rather arbitrary: a smaller value of r(0) would havegiven an even larger number of line searhes.Both hybrid algorithms are seen to be e�etive. As n inreases, Algorithm 1 takesan inreasing number of projetion iterations before the rank settles down. We �ndit better to inrease the value of s as the value of r� inreases. One the projetioniteration has settled down, the BFGS method �nds the solution rapidly and no furtherprojetion steps are needed. Algorithm 2 requires a relatively large number of linesearhes (see Table 2) in the �rst all of the BFGS method, after whih one projetionstep �nds the orret rank, and the next all of BFGS �nds the solution in a few linesearhes. This is beause of the good initial starting matrixX given by the projetionmethod. Beause the projetion steps in Algorithm 1 are relatively expensive, thedi�erene in omputing time between these algorithms is not very signi�ant.



Eulidean Distane Matries 15PA UA A1 A2n r� NPI r(0) TNL NV s NPI r(k) NL TNL5 2 21 2� 12 8 2 2 2� 7 1210 4 46 3 80 36 2 2 4� 15 4415 5 64 4 140 70 3 4 6(5�) 22 7620 7 101 5 176 133 3 4 7� 18 8125 8 85 6 221 192 3 4 8� 14 10630 9 129 6 144 261 3 4 10(9�) 19 5235 9 115 6 382 306 4 8 9� 23 10940 10 168 6 161 390 4 7 11(10�) 21 3845 11 136 6 246 484 4 9 11� 17 6450 13 171 6 288 637 4 7 13� 13 142Table 1: Comparing four algorithms for the Eulidean distane matrix problem.PA: The projetion algorithm (Setion 3).UA: The unonstrained algorithm (Setion 4).A1: Hybrid Algorithm 1.A2: Hybrid Algorithm 2.NPI: Number of projetion iterations.NL: Number of line searhes in the BFGS method.TNL: Total number of line searhes in the unonstrained algorithm.NV: Maximum number of variables in the unonstrained algorithm.A2n r(0) NL r(k) NLin from inBFGS OPA BFGS5 2� 1210 3 33 4� 1115 4 63 5� 1320 5 70 7� 1125 6 94 8� 1230 6 42 9� 1035 6 98 9� 1140 6 22 10� 1645 6 46 11� 1850 5 125 13� 17Table 2: Detailed progress of Algorithm 2.OPA: One iteration of the projetion algorithm.NL: Number of line searhes.
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