Quiz \#1 Math 102012
Name:
48/7.3 Evaluate $\int \cot x d x$
$\int \frac{\cos x}{\sin x} d x \quad u=\sin x \quad d u=\cos x d x$
$=\int \frac{1}{u} d u=\ln |u|+c=\ln |\sin x|+C$

44/7.2 Find an equation of the curve that satisfies each point (x, y) on the curve the slope equals the square of the distance between the pointand the y-axis the point $(-1,2)$ is on the curve.

$$
y^{\prime}=x^{2} \Rightarrow y=\frac{x^{3}}{3}+C \quad \text { at }(-1,2) \quad C=\frac{7}{3}
$$

30/7.4 Let $S=\sum_{k=0}^{n} a r^{k}$. Show that $S-r S=a-a r^{n+1}$.

$$
\begin{aligned}
S & =a r^{0}+a r^{\prime}+1+a r^{n} \\
-r S & =-a r^{k}-a r^{2} \quad-a r^{n+1} \\
S-r S & =a-a r^{n+1} .
\end{aligned}
$$

2. Find the maximum and minimum bounds of the intgral $\int_{0}^{3} x^{3}+2 d x$

$$
\begin{array}{r}
\max f(x)=x^{3}+2 \\
\quad \text { is } 29 \text { at } x=3 \\
\quad \min \text { is } 2 \text { al } x=0 \\
(3)(3)<\int_{0}^{3} x^{3}+2 d x \leqslant(3)(2 a)
\end{array}
$$

40/7.4 Show that the sum of the first n consecutive positive odd integers is n^{2}.

$$
\begin{aligned}
& 1+3+\cdots+2 k-1 \\
& \sum_{k=1}^{n} 2 k-1=2 \sum k-1=12 \frac{n(n+1)}{2}-n=n^{2}+\not x-k \\
& =n^{2}
\end{aligned}
$$

2. Find the maximum and minimum bounds of the intgral $\int_{0}^{\pi} \sin x d x$

$$
0<\sin x \leqslant 1
$$

$$
o(\pi) \leq \int_{0}^{\pi} \sin x d x<1(\pi)
$$

