Math260 Revision Notes

Robert Heffernan

The following notes are to help you revise for Math260. A few important points need to be made:

- These notes do *not* contain everything you need to know for the exam; they only contain some of the most important material.
- The best way to study for this exam is to *practice*. You should spend time solving the questions at the end of each section and solving old exam questions.
- These notes will be a convenient resource while you are doing this practice.
- *Note:* These notes may contain small errors. If you spot any please send me an email and I will update the file. Thank you.

1 First-order differential equations

1.1 Separable equations

The first-order differential equation

$$\frac{dy}{dx} = H(x, y)$$

is called *separable* provided that H(x, y) can be written as the product of a function of x and a function of y:

$$\frac{dy}{dx} = g(x)h(y) = \frac{g(x)}{f(y)} \text{ (where } h(y) = 1/f(y)\text{)}.$$

We can solve this by integrating:

$$\int f(y)dy = \int g(x)dx + C$$

and then (possibly) solving for y.

1.2 Linear equations

A *linear* first-order differential equation is of the form

$$\frac{dy}{dx} + P(x)y = Q(x).$$

To solve this, first calculate the integrating factor

$$\rho(x) = e^{\int P(x)dx}$$

then multiply both sides of the equation to get

$$D_x[\rho(x)y(x)] = \rho(x)Q(x).$$

We then integrate to get

$$\rho(x)y(x) = \int \rho(x)Q(x)dx + C$$

and then solve for y.

1.3 Homogeneous equations

A homogeneous first-order differential equation is of the form

$$\frac{dy}{dx} = F\left(\frac{y}{x}\right).$$

To solve this we make the substitutions

$$v = \frac{y}{x}, y = vx, \frac{dy}{dx} = v + x\frac{dv}{dx}$$

which will transform our original equation into the separable equation

$$x\frac{dv}{dx} = F(v) - v$$

which we then solve using the method above.

1.4 Bernoulli equations

A Bernoulli first-order differential equation is of the form

$$\frac{dy}{dx} + P(x)y = Q(x)y^n.$$

To solve this we make the substitution $y = y^{1-n}$ which transforms our original equation into a linear equation:

$$\frac{dv}{dx} + (1-n)P(x)v = (1-n)Q(x).$$

We then solve this using the method above.

1.5 Exact equations

A differential equation of the form

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0$$

ie.

$$M(x,y)dx + N(x,y)dy = 0$$

is exact if

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

To solve such an equation, first integrate M(x, y) with respect to x to get

$$F(x,y) = \int M(x,y)dx + g(y).$$

Then determine g(y) be imposing the condition that

$$\frac{\partial F}{\partial y} = N(x, y)$$

This will yield a general solution of the form F(x, y) = C.

2 Matrices

We will not summarise this material here (since you know this already from the preparatory year). You should know

• How to solve a linear system using the method of elimination;

- How to reduce a matrix to echelon form using Gaussian elimination;
- How to reduce a matrix to reduced echelon form using Gauss-Jordan elimination;
- How to use the above to solve systems of equations;
- How to add and multiply matrices together;
- How to compute the inverse of a matrix;
- How to work with matrix equations;
- How to compute the determinant of a matrix;
- That a matrix has an inverse if and only if it has nonzero determinant;
- How to use Cramer's rule;
- How to compute the inverse of a matrix using the formula

$$\mathbf{A}^{-1} = \frac{[A_{ij}]^T}{|\mathbf{A}|}$$

If you cannot do any of this, then you should revise the material in Chapter 3.

3 Vector Spaces

To begin, you should know:

- What a vector is;
- How to add vectors together and multiply vectors by scalars.

The *n*-dimensional space \mathbb{R}^n is the set of all *n*-tuples (vectors) (x_1, x_2, \ldots, x_n) of real numbers. We mainly deal with \mathbb{R}^2 and \mathbb{R}^3 (but sometimes with \mathbb{R}^n for higher *n*).

3.1 Subspaces

Let W be a nonempty subset of the vector space V. Then W is a *subspace* of V provided that W is itself a vector space with the same operations of addition and multiplication by scalars as in V. To check that a subset W is a subspace, you need to check that the following hold for W:

- 1. If \vec{u} and \vec{v} are vectors in W, then $\vec{u} + \vec{v}$ is also in W;
- 2. If \vec{u} is in W and c is a scalar, then the vector $c\vec{u}$ is also in W.

If **A** is a constant $m \times n$ matrix, then the solution set of the homogeneous linear system

 $\mathbf{A}\vec{x} = \vec{0}$

is a subspace of \mathbb{R}^n . We call this the *solution space*.

3.2 Bases

Let $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_k}$ be vectors in the vector space V. Then the set W of all linear combinations of $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_k}$ is a subspace of V. We say that W is spanned by the vectors $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_k}$.

The vectors $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_k}$ in a vector space V are said to be *linearly independent* provided that the equation

$$c_1 \vec{v_1} + c_2 \vec{v_2} + \dots c_k \vec{v_k} = \vec{0}$$

has only the trivial solution $c_1 = c_2 = \cdots = c_k = 0$.

The *n* vectors $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}$ in \mathbb{R}^n are linearly independent if and only if the $m \times n$ matrix

$$\mathbf{A} = [\vec{v_1}\vec{v_2}\cdots\vec{v_n}]$$

has nonzero determinant.

A finite set S of vectors in a vector space V is called a *basis* for V provided that

- 1. the vectors in S are linearly independent, and
- 2. the vectors in S span V.

Any two bases for a vector space consist of the same number of vectors. We call this number the *dimension* of the vector space. If a vector space V has dimension n, then any set of k > n vectors is linearly dependent.

If V is an n-dimensional vector space and S is a subset of V, then if S is linearly independent, then S is contained in a basis for V. In particular, if S in linearly independent and consists of n vectors, then S is a basis for V.

3.3 Bases for solution spaces

If you have to homogeneous linear system

 $\mathbf{A}\vec{x} = \vec{0}$

to find a basis for the solution space W:

- 1. Reduce **A** to echelon form;
- 2. Identify the r leading variables and the k = n r free variables. If k = 0, then $W = {\vec{0}}$.
- 3. Set the free variables to parameters t_1, t_2, \dots, t_k and the solve by back substitution for the leading variables.
- 4. Let $\vec{v_i}$ be the solution vector obtained by setting t_i equal to 1 and the other parameters to zero.
- 5. Then $\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_k}\}$ is a basis for W.

4 Higher-order equations

4.1 Basics

The general nth order linear differential equation has the form

$$P_0(x)y^{(n)} + P_1(x)y^{(n-1)} + \dots + P_{n-1}(x)y' + P_n(x)y = F(x).$$

We usually assume that $P_0(x) \neq 0$ so that we can divide and get an equation of the form

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = f(x).$$

The associated homogeneous linear equation is then

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = 0.$$

We will assume that the functions p_i and f are continuous on some open interval I.

If y_1, y_2, \ldots, y_n are n solutions of the homogeneous linear equation on the interval I and if c_1, c_2, \ldots, c_n are constants, then

$$y = c_1 y_1 + c_2 y_2 + \cdots + c_n y_n$$

is also a solution.

The *n* functions f_1, f_2, \ldots, f_n are said to be *linearly dependent* on the interval *I* provided that there exist constants c_1, c_2, \ldots, c_n not all zero such that

$$c_1 f_1 + c_2 f_2 + \dots + c_n f_n = 0$$

on I. If the functions f_1, f_2, \ldots, f_n are not linearly dependent, they are *linearly independent*.

If we have n solutions y_1, y_2, \ldots, y_n of a homogeneous nth order linear equation, then we can check to see if they are linearly independent using the *Wronskian*:

$$W = W(x) = W(y_1, y_2, \dots, y_n) = \begin{vmatrix} y_1 & y_2 & \cdots & y_n \\ y'_1 & y'_2 & \cdots & y'_n \\ \vdots & \vdots & & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{vmatrix}$$

To show that the solutions y_1, y_2, \ldots, y_n are linearly independent (on the interval I) we must show that their Wronskian is nonzero at some point in I.

If y_1, y_2, \ldots, y_n are *n* linearly independent solutions of the homogeneous equation then any other solution *Y* can be written as a linear combination of these:

$$Y(x) = x_1 y_1(x) + c_2 y_2(x + \dots + c_n y_n(x)).$$

Such a linear combination is called a general solution.

4.2 Constant coefficients

We now consider the homogeneous equation

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 y'' + a_1 y' + a_0 y = 0$$

where the coefficients a_0, \ldots, a_n are constant.

The characteristic equation is

$$a_n r^n + a_{n-1} r^{n-1} + \dots + a_2 r^2 + a_1 r + a_0 = 0$$

4.2.1 Distinct real roots

If the roots r_1, r_2, \ldots, r_n of the characteristic equation are real and distinct, then

$$y(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x} + \dots + c_n e^{r_n x}$$

is a general solution of our equation.

4.2.2 Repeated real roots

If the characteristic equation has a repeated root r of multiplicity k, then the part of a general solution of the differential equation corresponding to r is of the form

$$(c_1 + c_2x + c_3x^2 + \dots + c_kx^{k-1})e^{rx}.$$

4.2.3 Complex roots

We need Euler's formula:

 $e^{i\theta} = \cos\theta + i\sin\theta$

$$e^{z} = e^{x+iy} = e^{x}e^{iy} = e^{x}(\cos y + i\sin y).$$

If the characteristic equation has a complex conjugate pair of roots $a \pm bi$, then the corresponding part of a general solution to the homogeneous differential equation has the form

 $e^{ax}(c_1\cos bx + c_2\sin bx).$

4.2.4 Repeated complex roots

which tells us that if z = x + iy, then

If the complex conjugate pair of roots $a \pm bi$ has multiplicity k, then the corresponding part of the general solution has the form:

$$(A_1 + A_2x + \dots + A_kx^{k-1})e^{(a+bi)x} + (B_1 + B_2x + \dots + B_kx^{k-1})e^{(a-bi)x}.$$

4.3 Nonhomogeneous equations

We are still considering a differential equation with constant coefficients (and we will still need the associated homogeneous equation).

A general solution for such an equation will have the form

$$y = y_c + y_p$$

where the complementary function y_c is a general solution of the associated homogeneous equation and y_p is a particular solution of our nonhomogeneous equation.

4.3.1 The method of undetermined coefficients

Rule 1: If the term f(x) in our nonhomogeneous equation is a linear combination of (finite) products of the following types

- 1. A polynomial in x;
- 2. An exponential function e^{rx} ;
- 3. $\cos kx$ or $\sin kx$

and if no term appearing in f(x) or any of its derivatives satisfies the associated homogeneous equation, then we take as a *trial solution* for y_p a linear combination of all linearly independent such terms and their derivatives. We then determine the coefficients by substitution of this trial solution into the nonhomogeneous equation.

There may be *duplication* (ie. Rule 1 does not apply):

Rule 2: If the function f(x) is of the form

$$P_m(x)e^{rx}\cos kx$$
 or $P_m(x)e^{rx}\sin kx$

take as the trial solution

$$y_p(x) = x^s [(A_0 + A_1 x + A_2 x^2 + \dots + A_m x^m) e^{rx} \cos kx + (B_0 + B_1 x + B_2 x^2 + \dots + B_m x^m) e^{rx} \sin kx]$$

where s is the smallest nonnegative integer such that no term in y_p duplicates a term in the complementary function y_c . We then determine the coefficients as before.

The best way to understand the method of undetermined coefficients is to look at examples (pp.338–347 in the book).

4.3.2 Variation of parameters

If the nonhomogeneous equation

$$y'' + P(x)y' + Q(x)y = f(x)$$

has complementary function

$$y_c(x) = c_1 y_1(x) + c_2 y_2(x)$$

then a particular solution is given by

$$y_p(x) = \left(-\int \frac{y_2(x)f(x)}{W(x)}dx\right)y_1(x) + \left(\int \frac{y_1(x)f(x)}{W(x)}\right)y_2(x)$$

where $W = W(y_1, y_2)$ is the Wronskian of y_1 and y_2 .

4.4 Eigenvalues and eigenvectors

A number λ is an *eigenvalue* of the $n \times n$ matrix **A** if there exists a *nonzero* vector \vec{v} such that

$$\mathbf{A}\vec{v} = \lambda\vec{v}$$

We call \vec{v} an *eigenvector* of the matrix **A** associated to the eigenvalue λ .

A number λ is an eigenvalue of the $n \times n$ matrix **A** is and only if it satisfies the *characteristic equation*

$$|\mathbf{A} - \lambda \mathbf{I}| = 0.$$

To find eigenvalues and eigenvectors:

- 1. First solve the characteristic equation $|\mathbf{A} \lambda \mathbf{I}| = 0$ to get the eigenvalues;
- 2. Then, for each eigenvalue λ , solve the linear system $(\mathbf{A} \lambda \mathbf{I})\vec{v} = \vec{0}$ to find the eigenvectors associated with λ .

If λ is an eigenvalue of **A**, then the set of all eigenvectors associated with λ is the set of all nonzero solutions of the system

$$(\mathbf{A} - \lambda \mathbf{I})\vec{v} = \vec{0}$$

The solution space of this system is called the *eigenspace* associated with the eigenvalue λ . Remember that the zero vector does not count as an eigenvalue (even though it is an element of the eigenspace).

4.5 Diagonalisable matrices

The $n \times n$ matrices **A** and **B** are called *similar* if there is an invertible matrix **P** such that $\mathbf{B} = \mathbf{P}^{-1}\mathbf{AP}$. An $n \times n$ matrix **A** is called *diagonalisable* or **A** is similar to a diagonal matrix **D**.

The $n \times n$ matrix **A** is diagonalisable if and only if it has n linearly independent eigenvectors.

If \mathbf{A} has *n* distinct eigenvalues, then these give rise to *n* linearly independent eigenvectors and so \mathbf{A} is diagonalisable.

To diagonalise the matrix **A**, find the *n* distinct eigenvalues $\lambda_1, \ldots, \lambda_n$ and the *n* associated linearly independent eigenvectors $\vec{v_1}, \ldots, \vec{v_n}$ and let **P** be the matrix

$$\mathbf{P} = [\vec{v_1}\vec{v_2}\dots\vec{v_n}]$$

and then $\mathbf{D} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$ is a diagonal matrix whose diagonal entries are the eigenvalues $\lambda_1, \ldots, \lambda_n$. If \mathbf{A} has k < n distinct eigenvalues, then

- 1. For each eigenvalue λ find a basis for the associated eigenspace;
- 2. If you have found at least *n* eigenvalues then you can pick *n* eigenvectors $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}$ and their associated eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ and let

$$\mathbf{P} = \left[\vec{v_1} \cdot \vec{v_2} \dots \cdot \vec{v_n} \right]$$

and $\mathbf{D} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$ will be a diagonal matrix whose diagonal entries are the eigenvalues $\lambda_1, \ldots, \lambda_n$.

4.5.1 Powers of matrices

The important point here is to note that, if $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$ where \mathbf{D} is a diagonal matrix, then

$$A^k = \mathbf{P}\mathbf{D}^k\mathbf{P}^{-1}.$$

4.5.2 The Cayley-Hamilton Theorem

If the $n \times n$ matrix **A** has the characteristic polynomial

$$p(\lambda) = (-1)^n \lambda^n + c_{n-1} \lambda^{n-1} + \dots + c_2 \lambda^2 + c_1 \lambda + c_0$$

then

$$p(\mathbf{A}) = (-1)^n \mathbf{A}^n + C_{n-1} \mathbf{A}^{n-1} + \dots + c_2 \mathbf{A}^2 + c_1 \mathbf{A} + c_0 \mathbf{I} = \mathbf{0}$$

You can use this to compute the inverse of the matrix \mathbf{A} . For an example of this see pp.392–393 of the textbook.

5 Linear systems of differential equations

First, note that a system of differential equations can be transformed into a system of first-order equations and vice versa (see pp.396–400 of the textbook).

A linear system of first order equation has the form

$$\begin{aligned} x_1' &= p_{11}(t)x_1 + p_{12}(t)x_2 + \dots + p_{1n}(t)x_n + f_1(t) \\ x_2' &= p_{21}(t)x_1 + p_{22}(t)x_2 + \dots + p_{2n}(t)x_n + f_2(t) \\ &\vdots \\ x_n' &= p_{n1}(t)x_1 + p_{n2}(t)x_2 + \dots + p_{nn}(t)x_n + f_n(t). \end{aligned}$$

Such a system is called *homogeneous* if the functions F_1, f_2, \ldots, f_n are all identically zero.

The coefficient matrix is the matrix $\mathbf{P}(t) = [p_{ij}(t)]$. If we write $\vec{x} = [x_i]$ and $f(t) = [f_i(t)]$ then we can write the system as a matrix equation

$$\frac{d\vec{x}}{dt} = \mathbf{P}(t)\vec{x} + \vec{f}(t)$$

A solution of this system on the open interval I is a column vector function $\vec{x}(t) = [x_i(t)]$ such that the component functions satisfy the system.

The vector-valued functions $\vec{x_1}, \vec{x_2}, \ldots, \vec{x_n}$ are *linearly dependent* on the interval I provided that there exist constants (not all zero) such that

$$c_1 \vec{x_1}(t) + c_2 \vec{x_2}(t) + \dots + c_n \vec{x_n}(t) = \vec{0}$$

for all t in I. Otherwise they are *linearly independent*.

Their Wronskian is

$$W(t) = \begin{vmatrix} x_{11}(t) & x_{12}(t) & \cdots & x_{1n}(t) \\ x_{21}(t) & x_{22}(t) & \cdots & x_{2n}(t) \\ \vdots & \vdots & & \vdots \\ x_{n1}(t) & x_{n2}(t) & \cdots & x_{nn}(t) \end{vmatrix}$$

and if $\vec{x_1}, \ldots, \vec{x_n}$ are *n* solutions (on an open interval *I*) of the homogeneous linear system

$$\frac{d\vec{x}}{dt} = \mathbf{P}(t)\vec{x}$$

and $\mathbf{P}(t)$ is continuous on I then if $\vec{x_1}, \ldots, \vec{x_n}$ are linearly independent on I, $W \neq 0$ at each point of I.

If $\vec{x_1}, \ldots, \vec{x_n}$ are linearly independent solutions of the homogeneous linear system on I a general solution for the system has the form

$$\vec{x}(t) = c_1 \vec{x_1}(t) + c_2 \vec{x_2}(t) + \dots + c_2 \vec{x_n}(t).$$

The nonhomogeneous linear system

$$\frac{d\vec{x}}{dt} = \mathbf{P}(t)\vec{x} + \vec{f}(t)$$

has a general solution of the form

$$\vec{x}(t) = \vec{x_c}(t) + \vec{x_p}(t)$$

where $\vec{x_c}(t)$ is a general solution of the associated homogeneous linear system and $\vec{x_p}(t)$ is a particular solution of the nonhomogeneous system.

5.1 The eigenvalue method

To solve the $n \times n$ homogeneous constant-coefficient system $\vec{x}' = \mathbf{A}\vec{x}$:

- 1. Solve the characteristic equation to find eigenvalues $\lambda_1, \ldots, \lambda_n$ of the matrix **A**.
- 2. Find n linearly independent eigenvectors $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}$ of **A** (if possible)
- 3. You then get the n linearly independent solutions

$$\vec{x_1}(t) = \vec{v_1}e^{\lambda_1 t}, \dots, \vec{x_n}(t) = \vec{v_n}e^{\lambda_n t}.$$

If you have n distinct real eigenvalues, this is easy.

5.1.1 Complex eigenvalues

If you get a complex-conjugate pair λ and $\overline{\lambda}$ of eigenvalues: find the real and imaginary parts $\vec{x_1}(t)$ and $\vec{(x_2)}(t)$ of the associated complex solution to get two linearly independent real solutions. (See pp.425–429 of the textbook for examples).

5.1.2 Multiple eigenvalues

An eigenvalue is of *multiplicity* k if it is a k-fold root of the characteristic equation. If the associated eigenspace has dimension k then we are still OK (we say that the eigenvalue is *complete*, see p446f for an example).

If an eigenvalue λ of multiplicity k has only p < k linearly independent eigenvectors we say λ is *defective* and call the number d = k - p the *defect* of λ . This eigenvalue will give us only p solutions. We need to find another d linearly independent solutions to make up for this.

I will describe the method for a single defective multiplicity 2 eigenvalue here. For multiplicity 3 eigenvalue see Section 7.5 of the textbook.

If we have a defective multiplicity two eigenvalue λ with associated eigenvector $\vec{v_1}$ we will have a solution

$$\vec{x_1} = \vec{v_1} e^{\lambda t}$$

To find another solution:

1. Find a nonzero vector $\vec{v_2}$ that is a solution of the equation

$$(\mathbf{A} - \lambda \mathbf{I})^2 \vec{v_2} = \vec{0}$$

such that

$$(\mathbf{A} - \lambda \mathbf{I})\vec{v_2} = \vec{v_1}.$$

2. We can then form two linearly independent solutions

$$\vec{x_1}(t) = \vec{v_1} e^{\lambda t}$$

and

$$\vec{x_2}(t) = (\vec{v_1}t + \vec{v_2})e^{\lambda t}$$

of $\vec{x}' = \mathbf{A}\vec{x}$ corresponding to λ .

See pp.450 - 454 for an example and a discussion of multiplicity 3 vectors.