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Dominoes

Dominoes

Suppose you have some (finite) number of dominoes lined up
and satisfying the following condition:

as each domino falls it knocks over the domino next in line; or
the fall of domino n implies the fall of domino n + 1.

Q: If we cause the first domino to fall over will all the
dominoes fall over?

A: It seems fairly obvious that the answer is yes, they will all
fall over.
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Now, imagine that instead of a finite line of dominoes we have
an infinite line still satisfying the same condition

ie. the fall of domino n implies the fall of domino n + 1.

Suppose we again cause the first domino to fall.

Q: Do all the dominoes fall over?

Less obvious?

The principle of mathematical induction asserts that all the
dominoes do, in fact, fall over.
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Example 1

Consider
Q(n) = 0 + 1 + 2 + · · ·+ n.

We can look at Q(n) when n is small and see if we can spot a
pattern:

Q(0) = 0 = 0·1
2

Q(1) = 1 = 1·2
2

Q(2) = 3 = 2·3
2

Q(3) = 6 = 3·4
2

Q(4) = 10 = 4·5
2

Conclusion:

Q(n) = 0 + 1 + 2 + · · ·+ n =
n

2
(n + 1) .
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Example 2

Now consider

R(n) =
1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·+ 1

(n + 1) · (n + 2)
.

Again, we can look at R(n) when n is small and see if we can
spot a pattern:

R(0) = 1/2
R(1) = 1/2 + 1/6 = 2/3
R(2) = 1/2 + 1/6 + 1/12 = 3/4
R(3) = 1/2 + 1/6 + 1/12 + 1/20 = 4/5

Conclusion:

R(n) =
1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·+ 1

(n + 1) · (n + 2)
=

n + 1

n + 2
.
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Example 3

Finally, consider
S(x) = x2 + x + 41.

Again, we can look at S(x) when x is small and see if we can
spot a pattern:

S(0) = 41 prime!
S(1) = 43 prime!
S(2) = 47 prime!
S(3) = 53 prime!

Keep checking: S(4) = 61 (prime) S(5) = 71 (prime), . . . ,
S(10) = 151 (prime), . . .

Conclusion: S(x) is always a prime.
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Conclusions?

Can we trust these ‘conclusions’?

What if the patterns we have spotted break down at some
point?

Look back at our third example: S(x) = x2 + x + 41 and
consider x = 40

S(40) = 402 + 40 + 41 = 1681 = 412 (not prime!)

So, our ‘conclusion’ in this case was incorrect.

We have been a bit hasty in making our conclusions.

What is needed is either a counterexample (as above) or a
proof.
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Proofs

Look back at Example 1: Q(n) = 1 + 2 + · · ·+ n.

Sometimes we can make our conclusions certain by way of
simple algebraic manipulation:

1 + 2 + · · ·+ n =
1

2
[(1 + 2 + · · ·+ n) + (1 + 2 · · ·+ n)]

=
1

2
[(n + (n − 1) + · · ·+ 2 + 1)

+ (1 + 2 + · · ·+ (n − 1) + n)]

=
1

2
[(n + 1) + (n + 1) + · · · (n + 1)]

=
1

2
[n(n + 1)] =

n

2
(n + 1).
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Proof by induction

However, the principle of induction makes possible a powerful
method of proof which we call proof by induction.

Consider Example 2: R(n) = 1
1·2 + 1

2·3 + 1
3·4 + · · ·+ 1

(n+1)·(n+2) .

Our hypothesis (which we mistakenly called a conclusion) was
that for all natural numbers n we have R(n) = n+1

n+2 .

To prove this we will show

1 Our hypothesis is true for n = 0, ie. R(0) = 1/2; and
2 If our hypothesis is true for n = k , ie. R(k) = k+1

k+2 , then our

hypothesis is true for n = k + 1, ie. R(k + 1) = k+2
k+3 .

If both these statements are true then, on the basis of the
principle of induction, our hypothesis is true for any natural
number n.
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Proof of Ex. 2 by induction

1 R(0) = 1
1·2 = 1

2 ;

2 Suppose our hypothesis is true for n = k, ie. R(k) = k+1
k+2

where k is some natural number.

Note that R(k + 1) = R(k) + 1
(k+2)(k+3) .

So,

R(k + 1) = k+1
k+2 + 1

(k+2)(k+3) = k2+4k+4
(k+2)(k+3) = (k+2)2

(k+2)(k+3) = k+2
k+3 .

So, on the basis of the principle of induction, R(n) = n+1
n+2 for

any natural number n.
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The principle of induction (PI)

More formally, the principle of mathematical induction states:

If S ⊆ N is a subset of the natural numbers which has the
following properties

1 0 ∈ S ; and
2 n ∈ S implies that n + 1 ∈ S

then S = N, that is S contains all natural numbers.
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The principle and the proof

In our proof a moment ago We used this principle as follows:

Let T be the set {n ∈ N | R(n) = n+1
n+2}.

1 We first showed that R(0) = 1/2, ie. 0 ∈ T ;
2 Then we showed that if R(k) = k+1

k+2 , then R(k + 1) = k+2
k+3

ie. if k ∈ T , then k + 1 ∈ T .

3 Thus the principle of induction says that T = N.

ie. R(n) = n+1
n+2

for any natural number n.
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The principle of complete induction (CI)

A variant on the principle of induction is the principle of complete
induction, which states:

If S ⊆ N is a subset of the natural numbers which has the
following properties

1 0 ∈ S ; and
2 {0, 1, . . . , n} ⊆ S implies that n + 1 ∈ S

then S = N.
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The well-ordering principle (WOP)

A seemingly unrelated statement is the The well-ordering principle
which states that

Every non-empty subset S of N has a (unique) least element,
ie. there is an element a ∈ S such that a ≤ b for all b ∈ S .

We will finish with the surprising result that PI, CI and WOP are
logically equivalent statements.
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PI =⇒ CI

Assume the truth of PI.

Let S be a subset of N such that 0 ∈ S and whenever
{0, 1, 2, . . . , n} ⊆ S , we have n + 1 ∈ S .

We want to show that S = N.

Consider the statement P(n): the integers 0, 1, 2, . . . n are in
S .

Let S ′ = {n ∈ N | P(n) is true }.
Then 0 ∈ S ′. Assume k ∈ S ′, ie. P(k) is true, ie.
{0, 1, 2, . . . , k} ⊆ S . Then k + 1 ∈ S , so
{0, 1, 2, . . . , k , k + 1} ⊆ S and so P(k + 1) is true, ie.
k + 1 ∈ S ′.

So, we have 0 ∈ S ′ and k ∈ S ′ =⇒ k + 1 ∈ S ′ and so, by PI,
S ′ = N. However, this means that S = N.
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CI =⇒ WOP

Assume the truth of CI.

Let S be a non-empty subset of N. Assume that S does not
have a least element.

Let S ′ be the set of natural numbers that do not belong to S .

Suppose 0 ∈ S . Now 0 is the least element of N and so 0 is
the least element of S contradicting our earlier assumption, so
0 6∈ S , ie. 0 ∈ S ′.

Now assume {0, 1, 2, · · · , k} ⊆ S ′. If k + 1 ∈ S , then it would
follow that k + 1 is the least element of S . So, k + 1 6∈ S and
so k + 1 ∈ S ′.

Thus, by CI, S ′ = N, so S = ∅, contradicting our assumption
that S is non-empty. So, S must have a least element.
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WOP =⇒ PI

Assume the truth of WOP.

Let S be a subset of N such that 0 ∈ S and
k ∈ S =⇒ k + 1 ∈ S .

Let S ′ be the set of natural numbers that do not belong to S .
Assume S ′ is non-empty.

By WOP, S ′ has a least element a and, by definition of S ′,
a 6∈ S . Thus a 6= 0 and so a ≥ 1 which means a− 1 is a
natural number.

Moreover, a− 1 6∈ S ′ since a− 1 < a and a is the least
element of S ′.

However, this implies a− 1 ∈ S and so (a− 1) + 1 = a ∈ S
which contradicts our assumption that a ∈ S ′.

So, it is not possible that S ′ is non-empty and so S ′ = ∅ and
S = N.
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Conclusion

We have shown

1 PI =⇒ CI;
2 CI =⇒ WOP; and
3 WOP =⇒ PI.

Putting these all together gives PI ⇔ CI ⇔ WOP.

So, the well ordering principle is logically equivalent to the
principle of mathematical induction.

Do you find this to be surprising?
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Theorem: PI ⇔ CI ⇔ WOP

Questions?
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