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1 Introduction

Group theory is one of the pillars of modern mathematics and is an exciting and vibrant area
of research activity. We have only a few lectures during which we will cover the absolute
basics of the theory. In order to make this more exciting and to demonstrate how interesting
mathematics can be we are going to aim toward a specific goal: the classification of what
are called the wallpaper groups.

Of course, you don’t know what a group is yet. However, we will see that while numbers
are mathematical objects that measure size, there is a sense in which groups are mathematical
objects that measure symmetry.

A tessellation or tiling of the plane is a collection of plane figures that fills the plane
with no overlaps and no gaps. Such designs can be seen in the art of M.C. Escher or in the
beautiful designs of Islamic decorative art. Consider the following beautiful example of a
plane-tiling from Alhambra in Spain:

A symmetry of such a pattern is, loosely speaking, a way of transforming the pattern so that
the pattern looks exactly the same after the transformation. We will see that different types
of symmetry will give rise to different groups. These groups are called wallpaper groups or
plane crystallographic groups.

The aim of these notes is to prove the remarkable result that there are only 17 such
wallpaper groups and, hence, there are essentially only 17 different tessellations of the plane
that possess translational symmetry. This result was first proved by Evgraf Fedorov in 1891
and was independently proved by George Pólya in 1924.

It is sometimes said that all 17 of these patterns may be found in Alhambra although
this may not be true. Certainly, Islamic art is a good place to look for examples of these
symmetric tilings.
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It may not be possible to finish all the material from these notes in lectures. Anything
we do not cover will not be included on the examination. The slides from the lectures will
be made available on WebCT.

We will make use of many of the concepts we have covered up until now in the course. In
particular, you should be sure that you are comfortable with sets and subsets, relations (par-
ticularly equivalence relations), functions (including injections, surjections and bijections)
and binary operations.

You have been given a set of problems to solve. Your solutions to these will count toward
your classwork grade. These problems are designed to complement these notes and spending
time at them will greatly improve your understanding of the group theory we cover as well as
giving you a chance to practice proving things. If you wait until the last minute to attempt
these problems you will not derive very much benefit from them (both in terms of knowledge
gained and marks earned).

— Development 1 (M.C. Escher, 1937)

2



2 Lecture 1

2.1 Abstract groups

We are already familiar with sets and with binary operations so we we will begin by giving
the abstract definition of a group. We will then give some simple examples of groups.

Definition 2.1. Let G be a nonempty set together with a binary operation ∗. We say that
G is a group under this binary operation if the following three properties are satisfied:

(Associativity) (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G;

(Identity) There is an element e ∈ G such that a ∗ e = e ∗ a = a for all a ∈ G; and

(Inverses) For each a ∈ G there is an element b in G such that a ∗ b = b ∗ a = e.

So, to specify a group one needs two things:

1. A set G (this set can be finite or infinite); and

2. An associative binary operation ∗ on G that has an identity element e and where every
element has an inverse.

In our discussion of binary operations we proved the following three theorems:

Theorem 2.1. A group G has exactly one identity element.

Theorem 2.2. Let G be a group and let a be an element of G. Then a has a unique inverse
which we denote by a−1.

Theorem 2.3. In a group G the cancellation laws hold, that is

• b ∗ a = c ∗ a implies b = c; and

• a ∗ b = a ∗ c implies b = c

for any a, b, c ∈ G.

The following Lemma is also easy to prove (and useful)

Lemma 2.1. Let G be a group with binary operation ∗.

1. If a ∈ G, then (a−1)−1 = a.

2. If a1, a2, . . . , an ∈ G, then (a1 ∗ a2 ∗ · · · an)−1 = a−1n ∗ a−1n−1 ∗ · · · ∗ a−12 ∗ a−11 .

It is common to write ab instead of a ∗ b. We will often do this. Remember, however,
that a given group G need not be commutative and so, in general, ba 6= ab. If the underlying
set G is finite we call G (taken together with its binary operation) a finite group. Otherwise
G is an infinite group. If a group G is finite we call |G| the order of the group G. Otherwise
we say G has infinite order.
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2.1.1 Examples (and non-examples) of groups

Example 2.1. The set of integers Z is a group under the binary operation of addition. In
this case the identity is 0 and the inverse of a is −a.

Example 2.2. The set Q or rational numbers and the set R of real numbers are also groups
under the operation of addition.

Example 2.3. The set of integers Z under the binary operation of multiplication is not
a group. (Why?) However, the set Q+ of positive rational numbers is a group under
multiplication. In this case 1 is the identity element and the inverse if a is 1/a.

Example 2.4. The set of 2 × 2 matrices of real numbers with nonzero determinant is a
group under the operation of matrix multiplication. This set is usually denoted by GL2(R).
So

GL2(R) =

{[
a b
c d

]∣∣∣∣ a, b, c, d ∈ R, ad− bc 6= 0

}
.

In this case the identity is the matrix [
1 0
0 1

]
and [

a b
c d

]−1
=

[
d

ad−bc
−b

ad−bc
−c

ad−bc
a

ad−bc

]
.

The set of all 2 × 2 matrices of real numbers is usually denoted by M2(R). This is not a
group under matrix multiplication. Why?

Example 2.5. Consider the set Zn = {0, 1, . . . , n− 1} where n ≥ 1. This is a group under
the binary operation of addition modulo n. The identity element is 0 and for any j ∈ Zn the
inverse of j is n − j. This group is often referred to as the group of integers modulo n and
is, of course, an example of a finite group.

There are many more examples of groups—the concept of a group is everywhere once
you know to look for it. We will see some more examples as we go along.

2.1.2 Abelian groups

Definition 2.2. A group G is called commutative or abelian if ab = ba for all a, b ∈ G.

Exercise 2.1. Which of the examples in §2.1.1 are abelian?

2.1.3 Subgroups

Definition 2.3. A non-empty subset H of a group G is said to be a subgroup of G if H is
a group under the group operation in G. If H is a subgroup of G, then we write H ≤ G.
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Remember that if H is a subset of the set G we write H ⊆ G. Such a subset is not
necessarily a subgroup so be careful not to confuse the two notations. If H is a proper
subset of the group G, ie. H ⊂ G and H is a subgroup of G, then we write H < G and call
H a proper subgroup of G.

We must be careful when checking to see that a subset H is a subgroup of G. Suppose
G is a group with binary operation ∗. Then ∗ is a function from G × G to G. If H is a
subset of G then, for H to be a subgroup, we must have that the restriction of ∗ to H ×H
is a function from H ×H to H. In other words, if H is a subset of G and h1, h2 ∈ H then
in order for H to be a subgroup of G we must have h1 ∗ h2 ∈ H. In this case we say that H
is closed under the binary operation ∗.

It is easy to show that

Theorem 2.4. If H is a subgroup of the group G, then the identity element of G is the same
as that of H, and the inverse of each element of H is the same in G as in H.

The next theorem gives a way to check if a subset H of a group G is a subgroup:

Theorem 2.5. A non-empty subset H of a group G is a subgroup if and only if xy−1 ∈ H
for every x, y ∈ H.

Proof. It is clear that if H is a subgroup of G containing x and y, then y−1 is in H and so
xy−1 is in H.

Suppose conversely that H is a nonempty subset containing xy−1 whenever it contains x
and y. Then, if x ∈ H we have xx−1 = e in H and so if y ∈ H, then ey−1 = y−1 ∈ H. Also,
for each x, y ∈ H, x(y−1)−1 = xy is in H and so H is closed under the binary operation of
G. Finally, since the associative law holds in G it also holds in H.

So, we have shown that the identity element e is in H, if y is in H then y−1 is in H, H
is closed under the binary operation of G and the associative law holds in H. Thus H is a
group under the binary operation of G and is, as such, a subgroup of G.

For any group G we have

• G ≤ G; and

• {e} ≤ G.

2.1.4 Cyclic groups

Let G be a group. Given a ∈ G we write a1 for a and a2 for aa. Inductively, for n ∈ N, we
define an+1 to be (an)a. Moreover, we define a0 to be e and for n ∈ N we define a−n to be
(a−1)n. It is easy to verify that aman = am+n and (am)n = amn.

Definition 2.4. A group G is called cyclic if there is an element a ∈ G such that

G = {an | n ∈ Z}.
Such an element a is called a generator of G. If G is a cyclic group generated by a we write
G = 〈a〉.
Example 2.6. The set of integers Z under ordinary addition is cyclic. Both 1 and −1 are
generators.

Example 2.7. The set Zn under addition modulo n is cyclic. Again, 1 and −1 = n− 1 are
generators. However, Zn may have more generators than these.
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3 Lecture 2 (Some more abstract group theory)

3.1 Generators

We can extend the notion of a cyclic group to talk about groups generated by more than
one element:

Definition 3.1. Let G be a group and S a subset of G. The subgroup generated by S,
denoted by 〈S〉 is the smallest subgroup of G containing S.

If S = {s1, s2, . . . , sn} then 〈S〉 is the set of all products of powers of s1, s2, . . . , sn, ie.

〈S〉 = {sα1
1 s

α2
2 · · · sαn

n | α1, α2, . . . , αn ∈ Z}.

Another way to think of this is that 〈S〉 is the intersection of all the subgroups of G which
contain S.1

Definition 3.2. If G is a group and S is a set of elements of G such that 〈S〉 = G, then we
say that G is generated by S.

So a cyclic group is a group that is generated by one element. A group may have many
different generating sets.2

3.2 Homomorphisms and isomorphisms

Definition 3.3. A function f from a group G into a group H is said to be a homomorphism
if, for all a, b ∈ G, f(ab) = f(a)f(b).

Notice that on the left-hand-side of this relation, ie. in the term f(ab), the product ab
is computed in G whereas on the right-hand-side of the relation, ie. in the term f(a)f(b),
the product is that of elements in H. So, a homomorphism is (loosely speaking) a function
between groups that respects the binary operations of these groups.

Example 3.1. If G and H are groups and eH is the identity element of H, then the function
f : G→ H given by f(g) = eH for all x ∈ G is trivially a homomorphism.

Example 3.2. Let G be a group. The function g : G→ H defined by g(x) = x for all x ∈ G
is a homomorphism from G to itself.

Example 3.3. Let R be the group of all real numbers under the binary operation of addition
and let R∗ be the group of nonzero real numbers under the binary operation of multiplication.
Define f : R → R∗ by f(a) = 2a for each a ∈ R. To see that this is a homomorphism we
must check that f(ab) = f(a)f(b), ie. that 2a+b = 2a2b which is, as we know, true.

Definition 3.4. A homomorphism f from G to H is said to be an isomorphism if f is
bijective.

1One of the problems in your homework is to prove that the intersection of two subgroups is a subgroup.
This can easily be extended to say that the intersection of finitely many subgroups is a subgroup.

2Another homework problem asks you to show that a finite cyclic group of order n has φ(n) generators.
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Definition 3.5. Two groups G and H are said to be isomorphic if there exists an isomor-
phism between G and H. In this case we write G ∼= H.

Let’s think a minute about what it means for two groups G and H to be isomorphic. If
G ∼= H, then there exists some isomorphism f : G → H. Since f is a bijective function,
the sets G and H have the same cardinality, so |G| = |H|. The isomorphism f puts each
element g of G into one-to-one correspondence with some element f(g) of H and if g =
g1g2 ∈ G then f(g) = f(g1g2) = f(g1)f(g2). So, the sets G and H are, at least for group-
theoretical purposes, basically the same: they have the same cardinality. Moreover, the
binary operations on G and H respectively are also the same.

The point is this: when two groups are isomorphic, then they are, in some sense, equal.
The only difference is that their elements are labelled differently. An isomorphism f gives
us a way of matching the different labellings. In fact:

Theorem 3.1. The binary relation ∼= is an equivalence relation on the set of all groups:

• G ∼= G;

• G ∼= H implies H ∼= G; and

• G ∼= H and H ∼= J implies G ∼= J .

Proof. These follow from the (easily verified) facts that

• f : G→ G given by f(x) = x for all x ∈ G is an isomorphism;

• If f : G→ H is an isomorphism, then f−1 is an isomorphism; and

• If f : G→ H and g : H → J are isomorphisms, then g ◦ f : G→ J is an isomorphism.

The binary relation of isomorphism gives rise to equivalence classes which we call iso-
morphism classes. From the point of view of abstract group theory two groups in the same
isomorphism class are identical. However, for practical purposes we may prefer one or the
other in a given situation.

3.3 Normal subgroups

The following definition is of great importance in group theory (although we will not make
much use of it):

Definition 3.6. A subgroup N of a group G is said to be a normal subgroup of G if whenever
g ∈ G and n ∈ N , then g−1ng ∈ N . We write N EG.

If H is a subgroup of G we often write g−1Hg to mean the set of all elements of the form
g−1hg where h ∈ H, ie.

g−1Hg = {g−1hg | h ∈ H}.

So, a normal subgroup of G is a subgroup N such that g−1Ng ⊆ N for all g ∈ G. In fact:
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Theorem 3.2. If N EG, then g−1Ng = N .

Proof. If g−1Ng = N for all g ∈ G then N is clearly normal.
Conversely, suppose N E G. Then if g ∈ G, g−1Ng ⊆ N and (g−1)−1Ng−1 ⊆ N ,

ie. gNg−1 ⊆ N . Now, since gNg−1 ⊆ N , N = g−1(gNg−1)g ⊆ g−1Ng ⊆ N and so
N = g−1Ng.

If you take a further course on algebra you will use the idea of a normal subgroup to
define something called the quotient group. This is very important, but would take us further
into group theory than we presently want to go. For now we note the following:

Theorem 3.3. Let f is a group homomorphism from G to H and let eH be the identity of
H. If K is the set

K = {x ∈ G | f(x) = eH}

then K is a normal subgroup of G.

First we will prove a lemma:

Lemma 3.1. If f is a homomorphism from G to H and eG and eH are the identity elements
of G and H respectively, then

1. f(eG) = eH ; and

2. f(x−1) = f(x)−1.

Proof. 1. f(x)eH = f(x) = f(xeG) = f(x)f(eG), so f(eG) = eH .

2. eH = f(eG) = f(xx−1) = f(x)f(x−1) so f(x−1) = f(x)−1.

Proof of Theorem 3.3. First we must check that K is a subgroup of G, then we will check
that it is normal.

If x, y ∈ K, then f(x) = eH and f(y) = eH and so f(xy) = f(x)f(y) = eHeH = eH and
so xy ∈ K, ie. K is closed under the binary operation of G. Also, if x ∈ K then f(x) = eH
and so, by Lemma 3.1, f(x−1) = f(x)−1 = e−1H = eH and so x−1 ∈ K. Thus K is a subgroup
of G.

Finally suppose k ∈ K. Then f(g−1kg) = f(g−1)f(k)f(g) = f(g)−1eHf(g) = eH and so
g−1kg ∈ K. Thus K EG.

The set K is called the kernel of f . It should be clear that if K = {1}, then f is an
isomorphism.

So, each homomorphism from G to a group H gives rise to a normal subgroup of G. It
is also possible to show that each normal subgroup of G gives rise to homomorphism from
G to some group H but this would again take us too far afield.
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4 Lecture 3 (Some geometry)

In this lecture we will introduce some of the geometry we need to talk about wallpaper
groups (the formal definition of a wallpaper group will come later, when we’re ready for it).

Since we are interested in group theory, and not geometry per se, we will state many of
these results without proof.3 It might help your geometric intuition to think a little about
the results below and convince yourself that they are true. I recommend that you go home
and draw some pictures to convince yourself that each theorem is true (you don’t need to go
so far as to write down a formal proof).

We will identify the Euclidian plane with the Cartesian plane in the usual way. So,
points in the plane will be represented by ordered pairs of numbers (x, y) ∈ R×R. We will
denote points in the plane by capital letters P,Q, . . . and lines in the plane by lower-case
letters l,m, . . .. The line segment joining a point P to a point Q will be denoted by PQ and
the infinite line containing the points P and Q will be denoted by PQ. The distance from
P = (x1, y1) to Q = (x2, y2) is defined to be d(P,Q) =

√
(x2 − x1)2 + (y2 − y2)2. The origin

is the point 0 = (0, 0).
If a set S of points are all on some line we say that they are collinear, otherwise we say

that they are non-collinear.
Given points P,Q,R and S we will sometimes refer to triangles, eg. the triangle PQR:

b

b

bP R

Q

and parallelograms eg. the rectangle PQRS:

b

b b

b

P S

RQ

A rhombus is a quadrilateral whose four sides all have the same length, eg. the rhombus
PQRS:

3I will also say things like ‘it is clear that’ and ‘it is easy to show’. This is another way of saying ‘I will
not bother proving...’.
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b

b b

b

P S

RQ

So, a rhombus is a special type of parallelogram and a rhombus with right angles is a square.

4.1 Transformations

Definition 4.1. A transformation is is a bijective function from the set of points in the
plane.

If f is a transformation such that, whenever l is a line, f(l) is also a line then we call f
a collineation.

The identity transformation ι : R × R → R × R sends P to itself for every point P , ie.
ι(P ) = P for all P . Note that since transformations are bijective they have inverses and
it is easy to see that the inverse of a transformation is also a transformation. Also, if α
and β are transformations then the composition β ◦ α is also a transformation. Moreover,
the composition of transformations is associative. So, the set S of transformations contains
an identity element, is closed under composition and is closed under the taking of inverses.
Thus, the set of all transformations of the plane forms a group.

It is also easy to see that the set of all collineations forms a group.
We will usually write βα for β◦α and talk about the product (rather than the composition)

of two transformations α and β.

4.2 Translations

Definition 4.2. A translation is a transformation of the form (x, y) 7→ (x + a, y + b) for
some fixed a, b ∈ R.

Theorem 4.1. There is a unique translation taking any point P to any other point Q.

Proof. If P = (c, d) and Q = (e, f) then (x, y) 7→ (x + (e − c), y + (f − d)) is a translation
taking P to Q. It is easy to show that this is the only translation that will do.

The unique translation taking P to Q is denoted by τP,Q.

Theorem 4.2. Each translation is a collineation.

Proof. Suppose that the line l has equation ax+by+c = 0 and τP,Q = (x, y) 7→ (x+h, y+k).
Then τP,Q = τ0,R where R = (h, k) and the line PQ is parallel to the line 0R. So, τP,Q(l) is
the line m with equation ax+ by + (c− ab− bk) = 0.

Theorem 4.3. The set of all translations forms an abelian group called the translation
group.
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4.3 Fixed points and fixed lines

Definition 4.3. A transformation α fixes a point P is α(P ) = P and fixes a line l if α(l) = l.

Clearly, if P 6= Q, the translation τP,Q fixes no points and fixes exactly those lines parallel
to PQ.

4.4 Halfturns

Definition 4.4. If P = (a, b), then the halfturn σP about P is the transformation (x, y) 7→
(−x+ 2a,−y + 2b).

In the following illustration P = (1, 1) and the halfturn σP takes 0 = (0, 0) to A = (2, 2)
and B = (2, 1) to B′ = (0, 1):

b

b

b

b b

0

B

A

B′

P

Definition 4.5. A transformation α is called involutary if α2 = ι. We also call α an
involution. An involution is its own inverse.

The halfturn σP is an involutory transformation that fixes exactly the point P and fixes
any line l that contains P .

Theorem 4.4. If Q is the midpoint of PR, then σQσP = τP,R = σRσQ, ie. the product of
two halfturns is a translation.

Theorem 4.5. A product of three halfturns is a halfturn. In particular, if P ,Q and R are
non-collinear, then σRσPσQ = σS where PQRS is a parallelogram.

Theorem 4.6. The union of the set of translations and the set of halfturns forms a group.

4.5 Reflections

Definition 4.6. A reflection σm in the line m is a transformation defined by

σm(P ) =

{
P if P is on m;
Q if P is off m and m is the perpendicular bisector of PQ.
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b

b P

Q

m

Reflections are obviously involutions and σm fixes every point on m (we say that σm fixes
the line m pointwise) and fixes every line perpendicular to m (but not pointwise).

4.6 Isometries and symmetries

We will be particularly interested in a special type of transformation:

Definition 4.7. An isometry is a transformation α that preserves distance, ie. d(P,Q) =
d(α(P ), α(Q)) for all points P and Q.

Definition 4.8. An isometry α is a symmetry for a set S of points if α(s) ∈ S for each
s ∈ S.

The set of all symmetries of a set of points forms a group. If S is the set of all points,
then a symmetry of S is an isometry (and vice versa). So, the set of all isometries forms a
group.

4.7 Isometries as products of reflections

What sort of group does the set of all reflections generate? Since a reflection is its own
inverse, every element in this group must be a product of reflections. A product of reflections
is clearly an isometry. What we will see now is that every isometry is a product of reflections.

Theorem 4.7. If an isometry fixes two points on a line, then the isometry fixes the entire
line pointwise. If an isometry fixes three non-collinear points, then the isometry must be ι.

In fact, an isometry is completely determined by its action on three non-collinear points:

Theorem 4.8. If α and β are isometries and there exist non-collinear points P,Q and R
such that α(P ) = β(P ), α(Q) = β(Q) and α(R) = β(R), then α = β.

The following theorem is fundamental:

Theorem 4.9. 1. An isometry that fixes two points is a reflection or the identity.

2. An isometry that fixes exactly one point is a product of two reflections.

3. A product of reflections is an isometry. Every isometry is a product of at most three
reflections.
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4.8 Rotations

We will think of angles as being directed, ie. θ is different from −θ. The positive direction
will be anti-clockwise.

Definition 4.9. A rotation about a point C through a (directed) angle θ is the transforma-
tion ρC,θ that fixes C and otherwise sense P to P ′ where d(C,P ) = d(C,P ′) and the directed
angle between CP and CP ′ is θ. The point C is called the centre of rotation.

b

b

b

θ

C

P

P ′

Theorem 4.10. A rotation is an isometry and fixes exactly one point (its centre). A rotation
also fixes every circle with centre C. Moreover, ρC,θρC,ψ = ρC,θ+ψ and ρ−1C,θ = ρC,−θ.

Theorem 4.11. The set of rotations with centre C forms an abelian group. The involutory
rotations are halfturns.

4.9 Glide reflections

Definition 4.10. If a and b are distinct lines perpendicular to a line c, then σcσbσa is called
a glide reflection with axis c.

a b

c

b b

b

P σbσa(P )

σcσbσa(P )

Note that σbσa is a translation, so a glide reflection is a product of a reflection and a
translation.

Theorem 4.12. A glide reflection fixes no points and fixes exactly one line (its axis)
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4.10 Even and odd isometries

Remember that an isometry is the product of at most three reflections. An isometry that is
a product of an even number of reflections is called even. Otherwise it is called odd.

Theorem 4.13. An even isometry is a product of two reflections. An odd isometry is a
reflection or a product of three reflections. No isometry is both even and odd.

Theorem 4.14. Every translation is the product of two reflections in parallel lines and
conversely.

Theorem 4.15. Every rotation is a product of two reflections in intersecting lines and
conversely.

Theorem 4.16. The halfturn σP is the product of two reflections in any lines perpendicular
at P .

So the product of two reflections, ie. an even isometry, is either a translation or a rotation.
Only the identity is both a translation and a rotation. An odd isometry is either a reflection
or a glide reflection.

Theorem 4.17. An even involutary isometry is a halfturn, an odd involutary isometry is a
reflection. The set of even isometries forms a group.

4.11 Classification of isometries of the plane

We have seen several types of isometries and have stated some theorems regarding them.
The results in the last few sections allow us to say the following:

Theorem 4.18 (Classification theorem for isometries of the plane). Each non-identity isom-
etry is exactly one of the following: a translation, a rotation, a reflection or a glide reflection.
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5 Lecture 4 (Finite groups of symmetries)

Recall that an isometry is a transformation α that preserves distance and that an isometry
α is a symmetry for a set S of points if α(s) ∈ S for each s ∈ S.

5.1 Dihedral groups

5.1.1 The symmetry group of a square

Consider the symmetry group G of a square. For simplicity, suppose that the square is
centred at the origin and that one vertex lies on the positive x-axis:

l r

h

The square is fixed by ρ = ρ0,90 and σ = σh. Note that σ2 = ι = ρ4. Since G is a group, the
square must be fixed by the four distinct isometries ρ, ρ2, ρ3 and ρ4 = ι and the four distinct
odd isometries ρσ, ρ2σ, ρ3σ and ρ4σ = σ.

Now, let V1 and V2 be any two adjacent vertices of the square. Under any symmetry α,
V1 may go to any one of the four vertices but then V2 must go to one of the two vertices
adjacent to α(V1). After this the images of the remaining vertices are determined. This
means that there are at most 8 symmetries of the square and so our list above is complete.
Thus the symmetry group is G = 〈ρ, σ〉. This symmetry group is usually denoted by D4 and
is called the dihedral group of order 8.

5.1.2 The symmetry group of a regular n-gon

A regular polygon is a polygon which is equiangular—all angles are equal in measure—and
equilateral—all sides have the same length. A regular n-gon is a regular polygon with n
sides. Examples include an equilateral triangle (3 sides), a square (4 sides), a pentagon (5
sides), a hexagon (6 sides), etc.

Now consider the symmetry group of a regular n-gon. Suppose again that the n-gon is
centered at the origin and that one vertex lies on the positive x-axis. Keep our example of
the square in mind as we proceed.

The n-gon is fixed by ρ = ρ0,360/n and also by reflection in the x-axis which we will denote
by σ. Again, the n-gon is fixed by the n distinct even isometries ρ, ρ2, . . . , ρn = ι and by the
n distinct odd isometries ρσ, ρ2σ, . . . , ρnσ = σ. So the symmetry group has order at least 2n.
Let V1 and V2 be adjacent vertices of the n-gon. If α ∈ G, then V1 can be mapped to any
other vertex by α but then α(V2) must be one of the two vertices adjacent to α(V1). After
this the images of the other vertices are determined. Hence G has order at most 2n and so
|G| = 2n. Thus, G = 〈ρ, σ〉. This symmetry group is called the dihedral group of order 2n
and is usually denoted by Dn.
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Note that the subgroup of even isometries of Dn is a cyclic group of order n. D1 is the
symmetry group of an isosceles triangle that is not equilateral, D2 is the symmetry group of
a rectangle that is not a square and D3 is the symmetry group of an equilateral triangle.

Similarly, C1 contains only ι and is the symmetry group of a scalene triangle4, C2 contains
only ι and a halfturn and is the symmetry group of a parallelogram that is not a rhombus.

We have seen that the dihedral group of order 2n is the symmetry group of a regular
n-gon. It is easy to construct a polygon that has symmetry group Cn. Here is an example
of a polygon with symmetry group C6:

A similar construction will yield polygons with symmetry groups Cn for any n.

5.2 Finite groups of symmetries

The classification of isometries of the plane tells us that an isometry is a transformation of
one of four types: a translation, a rotation, a reflection or a glide reflection.

Suppose that G is a finite group of isometries. Then G cannot contain a non-identity
translation or a glide reflection as each of these would generate an infinite subgroup of G.
So, G contains only rotations and reflections.

Now suppose that G is a finite group of symmetries that contains only rotations. One
possibility is, of course, that G is the identity group containing only ι. Let us assume that
this is not the case. We will first assume that G contains at lease one non-identity rotation
ρA,θ. Assume that ρB,ψ is another non-identity rotation in G such that A 6= B.

Theorem 5.1. A rotation of θ degrees followed by a rotation of ψ degrees is a rotation of
θ + ψ degrees unless θ + ψ = 0, in which case the product is a translation.

Sketch of proof. Let c be the line AB. There is a line a through A and a line b through B
such that ρA,θ = σcσa and ρB,ψ = σbσc, eg.

b b

θ/2
ψ/2

A B

a b

c

4A triangle is called scalene if all of its angles are different.
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In the figure above a and b are parallel, ie. θ+ψ = 0 degrees, and so ρB,ψρA,θ is a translation
by Theorem 4.14. The other possibility is that the lines a and b may intersect in some point
C:

b b

b

θ/2 ψ/2
A B

C

In this case ρB,ψρA,θ will be a rotation about C through an angle of θ + ψ degrees.

Back to our group G. Since G contains ρA,θ and ρB,ψ it must contain

ρ−1B,ψρ
−1
A,θρB,ψρA,θ.

Now, by Theorem 5.1, ρ−1B,ψρA,θ is a rotation of −(θ + ψ) degrees and ρB,ψρA,θ is a rotation
of θ + ψ degrees and, since −(θ + ψ) + (θ + ψ) = 0 degrees, the product above must be a
translation. If B 6= A, this translation will not be the identity but since we have assumed
that G contains no translations, we must have B = A. So, all non-identity rotations in G
have centre A. Since G is a group ρA,−θ is in G if and only if ρA,θ is in G. So, without
loss of generality, we can write all the elements of G has ρA,θ where 0 ≤ θ < 360. Now let
ρ = ρA,θ ∈ G where θ has the minimum positive value. If ρA,ψ ∈ G with ψ > 0, then ψ − kθ
cannot be positive and less than θ for any integer k. So, ψ = kθ, ie. ρA,ψ = ρk. So, the
elements of G are precisely the powers of ρ and G is a finite cyclic group.

Now assume that G is a finite group of symmetries that contains at least one reflection.
Note that the set of even isometries in G form a subgroup of G. This subgroup does not
contain reflections, since reflections are odd isometries, so it contains only rotations and ι.
Hence, by our previous argument, this subgroup is a finite cyclic group generated by some
rotation ρ. So, the even isometries are ρ, ρ2, . . . , ρn for some n. Now suppose that G has m
reflections in total. If σ is some reflection in G, then ρσ, ρ2σ, . . . , ρ2σ are n odd isometries
in G. This means that n < m. However, since the product of two reflections is either a
translation or a rotation (ie. an even isometry) if we multiply each of the m reflections in G
on the right by σ we will get m distinct even isometries and so m ≤ n. Hence m = n and
so G contains 2n elements and is generated by a rotation ρ and a reflection σ. Thus G is a
dihedral group Dn for some integer n.

We have proved the following theorem:

Theorem 5.2 (Leonardo’s theorem). A finite group of isometries is either a cyclic group
Cn or a dihedral group Dn.
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6 Lecture 5 (Frieze Groups)

6.1 Introduction

In this lecture we will classify the frieze groups. A frieze group is a symmetry group of an
infinite plane figure, such as:

whose subgroup of translations is an infinite cyclic group.
An essential property of a frieze group is this: the pattern is left fixed by some ‘smallest

translation’. If we write |AB| for the length of the line segment AB, ie. |AB| = d(A,B), then
we call |AB| the length of the translation τA,B. So, what we mean by ‘smallest’ is ‘shortest
in length’.

First, some convenient terminology. Let S be a set of points. A point of symmetry for S
is a point P such that, for each s ∈ S, σP (s) ∈ S. A line of symmetry for S is a line m such
that, for each s ∈ S, σm(s) ∈ S.

If isometries α and σP are in a group G of isometries, then σα(P ) is in G, since ασPα
−1

is in G. Similarly, if α and σl are in G, then σα(l) is in G. So,

Theorem 6.1. If P is a point of symmetry for a set S of points and α is a symmetry for
S, then α(P ) is a point of symmetry for S. If l is a line of symmetry for S, then α(l) is a
line of symmetry for S.

Definition 6.1. A group of isometries that fix a given line c and whose translations form
an infinite cyclic group is called a frieze group with centre c.

Let τ be a non-identity translation that fixes a line c. We will determine all frieze groups
F with centre c whose translations form the infinite cyclic group 〈τ〉.

We will pick a special point A on c as follows:

• If F contains halfturns, then A is chosen to be the centre of a halfturn;

• If F contains no halfturns but does contain reflections in lines perpendicular to c, then
A is chosen to be the intersection of one of these lines and c;

• Otherwise, A is any point on c.

Now let Ai = τ i(A). Then, A0 = A and, since τn(Ai) = τn+1(A), each translation in F
takes each Ai to some Aj.

Let M be the midpoint between A and A1 and let Mi = τ i(M). So, Mi is the midpoint
between Ai and Ai+1 and also the midpoint between A0 and A2i+1.

18



6.2 F1

One possibility for F is that it is just the group generated by τ . Let F1 = 〈τ〉. A frieze
pattern having F1 as its symmetry group has no point or line of symmetry and is not fixed
by a glide reflection, eg:

c

6.3 F2

Apart from translations, the only other even isometries that fix c are the halfturns with
centre on c. Suppose F contains a halfturn. Then σA ∈ F . Also, σM ∈ F since σM = τσA.
So, by Theorem 6.1, F contains σAi

and σMi
for each i. Now suppose P is the centre of

some halfturn in F . Then σPσA ∈ F so σPσA(A) = An for some n, since the product of two
halfturns is a translation. This implies that σP (A) = An, since σA fixes A, and so P is the
midpoint of A and An, ie. P = Mj where j = (n− 1)/2. So F contains those halfturns that
have centre Ai or Mi. Let F2 = 〈τ, σA〉. Since τσn is an involution, τσA = σAτ

−1. So, every
element in F2 is of the form τ i or σAτ

i, ie. of the form σjAτ
i
A. Also, F2 = 〈σA, σM〉, since

σMτ = σA.
A freize pattern having F2 as its group of symmetries has a point of symmetry but no

line of symmetry, eg:

c

6.4 F 1
1

If F contains only even isometries it must be either F1 or F2. We will now try augmenting
F1 or F2 with odd isometries.

Recall that σl fixes c if and only if l = c. Let F 1
1 = 〈τ, σc〉. Since τσc = σcτ , F 1

1 is abelian
and every element is of the form σjcτ

i. If n 6= 0, then F 1
1 contains the glide reflection with

axis c that takes A to An.
A frieze pattern with F 1

1 as its symmetry group has no point of symmetry and the centre
is a line of symmetry, eg.:

c

6.5 F 1
2

Let F 1
2 = 〈τ, σA, σc〉. Since σc commutes with τ and σA, every element in F 1

2 is of the form
σkcσ

j
Aτ

i. If n 6= 0, then F 1
2 contains the glide reflection σcτ

n with axis c that takes A to An.
Also, F 1

2 contains τ 2iσaσc which is the reflection in the line perpendicular to c at Mi. If a is
the line perpendiciular to c t A, then F 1

2 = 〈τ, σa, σc〉.
A frieze pattern with F 1

2 as its symmetry group has a point of symmetry and the centre
is a line of symmetry, eg.:
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c

6.6 F 2
1

Suppose F does not contain a halfturn but does contain the reflection in a line a perpendicular
to c. So, A is in a. Then F contains τ 2iσa which is the reflection in the line perpendicular
to c at Ai and F also contains τ 2i+1σa which is the reflection in the line perpendicular to c
at Mi.

Assume that F contains another reflection σl. Then l 6= c as the halfturn σcσa 6∈ F . So,
l is perpendicular to c. Then F contains the translation σlσa which must take A to An for
some n. So, σl(A) = An for some n 6= 0 and l is perpendicular to c at some Ai or Mi. Thus
F contains exactly those reflections in lines perpendicular to c and Ai for each i and Mi for
each i.

We have now considered all possibilities for adding reflections to F1.
Let F 2

1 = 〈τ, σa〉 where a is perpendicular to c at A. Since τσa = σaτ
−1, every element of

F 2
1 is of the form σjaτ

i. F 2
1 does not contain σc but does contain the reflections in the lines

perpendicular to c at Ai or Mi for each i.
A frieze pattern having F 2

1 as its symmetry group has no point of symmetry and has a
line of symmetry but the centre is not a line of symmetry, eg.:

c

6.7 F 2
2

Suppose now that F contains a halfturn and also contains σq for some line q. If q 6= c, then
q is perpendicular to c at Ai or q is perpendicular to c and Mi (for some i) and the group is
just F 1

2 . So, suppose q is off each Ai and Mi.
Since, by Theorem 6.1, σq(A) must be the centre of a halfturn in F , q must be the

perpendicular bisector of AMi for some i. Theorem 6.1 now implies that F contains the
reflection in the perpendicular bisector of AMi for each i. Thus F contains σp where p is the
perpendicular bisector of AM .

Now, if the line a is perpendicular to c at A, then F cannot contain both σp and σa as
σpσa is a translation taking A to M and is shorter than τ , contradicting the fact that τ is
the shortest translation in F . Also, since σpσa = σpσcσA, F cannot contain both σp and σc.
These are all the possibilities for adding a reflection to F2.

So, let F 2
2 = 〈τ, σA, σp〉 where p is the perpendicular bisector of AM . F 2

2 contains the
glide reflection σpσA with axis c that takes A to M . Let γ = σpσA. Since τ = γ2 and
σp = γσA we have that F 2

2 = 〈γ, σA〉. F 2
2 does not contain σc.

A frieze pattern having F 2
2 as its symmetry group has a point of symmetry, a line of

symmetry but centre is not a line of symmetry, eg.:

c
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6.8 F 3
1

So far we have not assumed that our frieze group contains a glide reflection (although some-
times it has turned out that it does).

Now suppose F contains a glide reflection α. Then α has axis c and α2 is a translation
that fixes c. There are two cases, either α2 = τ 2n or α2 = τ 2n+1 for some n.

Suppose that α2 = τ 2n. Since α and τ commute, (ατ−n)2 = ι. So, the odd involuntary
isometry ατ−n must be σc. Hence, α = σcτ

n. In this case F contains σc and σcτ
m for each

m. If F does not contain a halfturn this is just F 1
1 . If F does contain a halfturn we have F 1

2 .
Now suppose that α2 = τ 2n+1. Then (τ−nα)2 = τ . Let γ = τ−nα. Then γ is an odd

isometry and γ2 = τ . Thus γ is the unique glide reflection with axis c that sends A to M .
Since γ2m = τm and γ2m+1 = τmγ, the glide reflections in F are exactly those of the form
τmγ. Let F 3

1 = 〈γ〉.
A frieze pattern having F 3

1 as its symmetry group has no point of symmetry and no line
of symmetry but is fixed by a glide reflection, eg.:

c

6.9 Loose ends

Finally, suppose F contains the glide reflection γ and isometries in addition to 〈γ〉. Since
the square of the translation σcγ is τ , σcγ is not in 〈τ〉. So, σc is not in F . If F contains σl
with l perpendicular to c, then F also contains the halfturn σlγ. If F contains a halfturn it
must contain σA. So, in this case, F contains σA and γ and so F = F 2

2 .
We have now run out of possibilities. Thus the only possible frieze groups are F1, F2,

F 1
1 , F 1

2 , F 2
1 , F 2

2 and F 3
1 .

6.10 Recognising frieze patterns

Each of our frieze groups is named F j
i where i is 1 or 2 and j is 1, 2, or 3. There is method

to this madness:

Subscript i =

2: F j
i contains a halfturn;

1: F j
i contains no halfturn.

Superscript j= 1: F j
i has c as a line of symmetry;

2: F j
i does not have c as a line of symmetry, but does have a line of symmetry per-
pendicular to c;

3: F j
i is generated by a glide reflection.

So, to recognise a frieze group you can ask yourself a series of questions:

21



N

Y Y

Y

N

N

N

Y

N Y

YN

F 1
1

F 3
1

F 2
1

Ref. in c?

Glide?

Halfturn?

Ref.?

Ref. in c?

F 2
2

F1

F2

F 1
2Ref.?

What should I do now?

• Read back over this lecture and make sure you understand it;

• Convince yourself that we have (as we claim) covered all possibilities for frieze groups;

• Learn how to recognize the frieze group of a pattern.
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7 Lecture 6 (Wallpaper groups)

7.1 Wallpaper groups and translation lattices

Definition 7.1. A wallpaper group W is a group of isometries whose translations are exactly
those in 〈τ1, τ2〉 where if τ1 = τA,B and τ2 = τA,C , then A,B and C are non-collinear points.

Definition 7.2. If W is a wallpaper group a translation lattice for W determined by a point
P the set of all images of P under the translations in W .

Since every translation in a wallpaper group W is of the form τ j2τ
j
1 , then the set of points

Aij = τ j2τ
i
1(A) form a translation lattice for W :

b b b b

b b b b

b b b b

A00

A01

A02

A10

A11

A12

A20

A21

A22

A30

A31

A32

A unit cell for W with respect to the point A and generating translation τ1, τ2 is a quadri-
lateral region with vertices Aij, Ai+1,j, Ai,j+1 and Ai+1,j+1. An example is highlighted in the
figure above.

If a translation lattice has a rectangular unit cell it is called rectangular, if it has a
rhombic unit cell it is called rhombic.

We will use some preliminary results that we will not prove. The proofs of these take a
little thought but are not too difficult:

Theorem 7.1. If W contains odd isometries, then a translation lattice for W is either
rectangular or rhombic.

Theorem 7.2. If σl is in a wallpaper group, then l is parallel to a diagonal of a rhombic
unit cell for W or else is parallel to the side of a rectangular unit cell for W .

Theorem 7.3. If a glide reflection in a wallpaper group W fixes a translation lattice for W ,
then W contains a reflection.

7.2 n-Centres

The previous section tells us what we need to know about odd isometries in a wallpaper
group for the moment. What about rotations?

Definition 7.3. A point P is an n-centre for a group G of isometries if the rotations in G
with centre P form a finite cyclic group Cn with n > 1.
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A figure is a nonempty set of points. If P is an n-centre for the symmetry group of a
figure we also call P an n-centre of the figure. A centre of symmetry is an n-centre for some
n.

These n-centres will turn out to be pivotal5 for our study of wallpaper groups. First
notice that, for a given n, he set of n-centres must be fixed by every isometry in the group.
To see this suppose that α(P ) = Q for some isometry α in a group G. Since

αρP,θα
−1 = ρQ,±θ

and
α−1ρQ,ψα = ρP,±ψ

we see that Q is an n-centre if and only if P is an n-centre. We have:

Theorem 7.4. For a given n, if a point P is an n-centre for a group G of isometries and
G contains an isometry that takes P to Q, then Q is an n-centre for G.

Now suppose that rotations ρA,360/n and ρP,360/n with P 6= A and n > 1 are in a wallpaper
group W . Then W contains the product ρP,360/nρA,−360/n which is a non-identity translation

τ j2τ
i
1 for some i and j by Theorem 5.1. So

ρP,360/n = τ j2τ
i
1ρA,360/n

and
ρP,360/n(A) = τ j2τ

i
1ρA,360/n(A) = Aij.

Hence, either P is the midpoint of A and Aij (when n = 2) or else the triangle APAij is
isosceles. In either case

2|AP | = |AP |+ |PAij| ≥ |AAij| > 0.

Therefore 2|AP | is not less than the length of any non-identity translation in W :

Theorem 7.5. If ρA,360/n and ρP,360/n with P 6= A and n > 1 are in a wallpaper group W ,
then 2|AP | is not less than the length of the shortest identity translation in W .

This theorem tells us that no two n-centres can be ‘too close’ to each other.

7.3 The crystallographic restriction

Suppose a point P is an n-centre of a wallpaper group W . Let Q be an n-centre at the least
possible distance from P with Q 6= P . Let R = ρP,360/n(P ). Then R is an n-centre and
|PQ| = |QR|. Let S = ρR,360/n(Q). Then S is an n-centre and |RQ| = |RS|.

b b

bb

R Q

S = P

b b

b b

R Q

S P

b b

b b

R Q

S P

b b

b b

R Q

S P

b b

bb

R Q

SP

5The pun is, of course intentional. If you are to read much mathematics you will need to have a strong
stomach for puns.
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The various possibilities are shown in the figure above. If P = S, then n = 6. If S 6= P ,
then we must have

|SP | ≥ |PQ| = |RQ|
and so n ≤ 4. We have proved:

Theorem 7.6 (The crystallographic restriction). If a point P is an n-centre for a wallpaper
group, then n is one of 2, 3, 4 or 6.

Corollary 7.7. If a wallpaper group contains a 4-centre, then the group contains neither a
3-centre nor a 6-centre.

Proof. Both ρP,120 and ρQ,90 cannot be in the same wallpaper group as their product is a
rotation of 30 degrees about some point Q, which the previous theorem will not allow.

7.4 Wallpaper groups

With Theorem 7.6 in hand the idea of classifying all possible wallpaper groups becomes a
much more reasonable possibility.

So that we at least see a few examples of wallpaper groups, we will look at those wallpaper
groups that contain an 6-centre. We begin by noting that if we have a 6-centre for a wallpaper
group, we have much more symmetry besides:

Theorem 7.8. Suppose A is a 6-centre for a wallpaper group W . Then there are no 4-
centres for W . Moreover, the centre of symmetry nearest to A is a 2-centre M , and A is
the centre of a regular hexagon whose vertices are 3-centres and whose sides are bisected by
2-centres. All the centres of symmetry for W are determined by A and M .

Proof. First, recall that since A is a 6-centre, W contains no 4-centres. Let M be an n-centre
nearest to A. If M were a 3-centre or a 6-centre, then there would be a centre F closer to A
than M , where ρM,120ρA,60 = ρF,180:

b b

b

b

bA M

F

G

J
30

and so M must be a 2-centre.
Now define a point G by the equation

ρM,180ρA,−60 = ρG,120

So, G is either a 3-centre or a 6-centre. However, G cannot be a 6-centre as then there would
be a centre J between A and M , where J is defined by the equation

ρG,60ρA,60 = ρJ,120.
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Hence G must be a 3-centre.
The images of G under powers of ρA,60 are the vertices of the hexagon in the statement

of the theorem.
Let B = σM(A) and C = ρA,60(B). Then B and C are 6-centres for W .
Let N = ρA,60(M). Then N is a 2-centre for W .
Also, since A must go to a 6-centre under an element of W , σMσA and σNσA are shortest

translations in W . So, τA,B and τA,C must generate the translation subgroup of W .
An illustration will help you to sort all of this out. This is on a separate sheet (which I

will give you in the lecture).

So, we have our first example of a specific wallpaper group:

W6 = 〈τA,B, τA,C , ρA,60〉 = 〈ρA,60, σM〉

where the triangle ABC is equilateral and M is the midpoint of AB.
In the figure (on a separate sheet) a unit cell determined by the parallelogram ABCD is

shaded and the midpoint of AB and is labelled M and the midpoint of AC is labelled N . E
is a further point such that NAME is a parallelogram.

There are two darker shaded regions in the illustration also. These regions are called
bases for W6. If W is a wallpaper group, a smallest polygonal region t such that the plane
is covered by {α(t) | α ∈ W} is called a base for W .

The bases help us understand how a wallpaper pattern is given to us by a symmetry
group. If t′ is a figure with identity symmetry group in base t, then the union of all the
images αt′ with α ∈ W is a figure with all the symmetries in W . This figure is said to have
motif t′.

7.5 Extending W6

What if we add more isometries to W6 to make a new wallpaper group W? Since the rhombic
translation lattice of 6-centres determined by the 6-centre A must be fixed by any isometry in
W the only possibility for extending W6 is to add reflections that fix this translation lattice.
However, if we add any possible reflection the symmetries already in W6 force us to add all
possible reflections. Let

W 1
6 〈τA,B, τA, C, ρA,60, σMC〉.

Then

W 1
6 = 〈ρA,60, σM , σMC〉

= 〈σAG, σGM , σMC〉

and so W 1
6 is generated by three reflections in three lines that contain the sides of a 30−60−90

triangle. In fact
W 1

6 = 〈ρA,60, σMC〉.

A wallpaper pattern having W6 as its symmetry group has a 6-centre but no line of
symmetry. A wallpaper pattern W 1

6 as its symmetry group has a 6-centre and a line of
symmetry.
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7.6 Where do we go from here?

We have only seen two wallpaper groups but, unfortunately, we are out of time.
Theorem 7.6 is the essential tool in the classification as it restricts greatly the rotational

symmetries that can appear in wallpaper groups. The classification proceeds by first consid-
ering n-centres. A wallpaper group can have no n-centre; only 2-centres or only 3-centres.
A wallpaper group may also have 4-centres or 6-centres. For each of these 5 types we obtain
a ‘smallest’ wallpaper group with each property. We then consider all possibilities of adding
reflections and glide reflections to these groups. This process will yield all 17 wallpaper
groups.

The appendix lists some books that you can read to see the full classification.
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8 Appendix

If you enjoyed the course you may want to do more reading to learn more. The following are
books that I recommend to students at your level interested in learning some more about the
topics we have covered. The popular-level books are written for non-mathematicians and
will make for good bedtime reading. I have chosen textbooks that I feel are both well-written
and suited to your current level of knowledge. You will enjoy any of these books if you take
the time to read them.

8.1 Group Theory

In my lecture notes on group theory I relied heavily on Transformation Geometry by George
E. Martin. This book is expensive, however, and I chose it because the group-theoretical
prerequisites are light. You will benefit more by reading books that take a slightly different
point of view. I recommend the following books (all of which are not too expensive):

8.1.1 Popular-level books

• Symmetry by Herman Weyl: This book is a classic and is based on a series of lectures
delivered by one of the most famous mathematicians of the last century to a general
audience.

• Symmetry by Marcus du Sautoy: This is another well-written popular level book
exploring the nature of symmetry. It is an easier read than Weyl’s book.

8.1.2 Textbooks

• Symmetries by D.L. Johnson: If you are interested in reading the full classification of
the 17 wallpaper groups (and learning more about groups and symmetry) I recommend
that you read this book instead of the book by Martin mentioned above. In this book
Johnson introduces more group theory than we had time for in class and he then uses
this extra machinery to provide more pleasing proofs of the classifications of the frieze
groups and wallpaper groups. He then moves on to tessellations of the plane and of
the sphere and ends with a discussion of regular polytopes. The book is aimed at
undergraduates and if you take the time to read the book you will learn some very
good group theory as well as some fascinating geometry. Johnson is a very well known
group theorist.

If you want to learn more group theory (and not just applications of group theory to con-
siderations of geometrical symmetry) there are many books on the market (and many of
them can be found in the university library). However, many of these books are written
for graduate students and you might find them to be too difficult for a first introduction.
Moreover, some of the textbooks aimed at undergraduates are not very enjoyable to read. I
recommend the following books:

• Topics in algebra by I.N. Herstein: This a well-written and well-respected undergrad-
uate textbook. This book contains an introduction to the theories of rings, fields and
vector spaces as well as the theory of groups.

28



• The theory of groups by I.D. Macdonald: This is another well-written introduction to
group theory. It is perhaps a little easier to read than Herstein’s book (although both
are fun to read) and concentrates entirely on group theory.

• Topics in Group Theory by G. Smith and O. Tabachnikova: This book is a recent
publication and is again very well written and enjoyable to read.

8.2 Number Theory

8.2.1 Popular-level books

• The music of the primes by Marcus du Sautoy: There are many popular-level books
on number theory but this is one one of the more enjoyable.

8.2.2 Textbooks

As is the case with group theory, there are many textbooks devoted to number theory but
many of them are quite difficult and aimed at graduate students. If you liked the little bit
of number theory we studied in the course and would like to see more, then I recommend:

• A concise introduction to the theory of numbers by Alan Baker: This is a very short
book (only about 100 pages) and it covers the sort of elementary number theory that
we looked at briefly in the course. I recommend it highly.

8.3 Set Theory and Logic

Logic is a huge area (studied by philosophers as well as by mathematicians). Again there
are many textbooks on the market, many of which are quite difficult. I recommend:

• Naive set theory by P.R. Halmos: If you do not want to delve too deeply into the world
of formal set theory but would like to learn more, then this book is ideal. P.R. Halmos
is justly famous as one of the best mathematical textbook writers of his generation.

• Sets, Logic and Categories by Peter Cameron: As well as telling you more about
set theory and logic, this book will introduce you to category theory (which is an
increasingly important topic in mathematics). Cameron is another excellent writer.

• The joy of sets by Keith Devlin: this is a relatively difficult textbook but will be the
textbook for Math499 next semester.
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