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THE JACOBI IDENTITY

H. Azad

Introduction

The aim of this paper is to outline an alternative approach to Chevalley groups which

is suggested by results of R. Steinberg, especially § 11 of [6], and by [1]. The approach

we have in mind works with a system of axioms which involve only a root system and

a commutative ring, and in a sense avoids Chevalley bases. Needless to say, this would

have been impossible without knowing the contents of [2] and [6]. An advantage of

this approach is that problems like those mentioned in [2, p. 64] vanish automatically.

This paper is organized as follows: In § 1 we prove an analogue of [1] for a class of Lie

algebras. Then, in § 2, by simply reversing a procedure given in the proof of Proposition

(1.1), we construct, for a given root system which has no multiple bonds, a function N ,

defined on pairs of independent roots (u, v) such that Nu,v is ±1 if and only if u+v is a

root, and verify the Jacobi identity for N . That such a function exists is nothing new;

see, for example [2, p. 24], [8] or [5, p. 285], which also gives the briefest solution to

date of this problem. We have thought doing this worthwhile as the function N arises

naturally from the root system. The construction of a Lie algebra for a given root

system is then immediate. This construction may also interest those who do machine

computation as Definition (2.3) can be translated into an algorithm which will produce

positive roots and structure constants one after the other.

In the final section we give a system of axioms for Chevalley groups over commuta-

tive rings, and making use of results of R. Steinberg together with those of the previous

sections, we outline a proof of existence of these groups.
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The arguments of this paper are of an elementary character and in essence involve

only the Jacobi identity and some technicalities on root systems.

Our references for root systems and Chevalley groups are [2, 4, 6].

1 A Uniqueness Theorem

Let R be an irreducible root system with no multiple bonds, R+ a positive system of

roots, S the corresponding simple system of roots and A a commutative ring. In this

section we consider Lie algebras (L, [ , ]) over A with the following properties:

(a) L is generated by elements Xr (r ∈ R) such that aXr �= 0 for all nonzero a ∈ A.

(b) [Xr, Xs] = Nr,sXr+s, if r + s ∈ R, Nr,s being an element of A, and [Xr, Xs] = 0

if r + s �= 0 and r + s �∈ R.

(c) [Xs, X−s; Xr] = 〈r, s〉Xr,s, s being a simple and r an arbitrary root: here 〈r, s〉 is

the Cartan integer corresponding to the pair of roots (r, s).

Proposition 1.1 There exist units cr (r ∈ R) such that if we set X ′
r = crXr, [X

′
r, X

′
s] =

N ′
r,sX

′
r+r (r + s �= 0) and Hr = [X ′

r, X
′
−r] for all r, s ∈ R, then

(i) [H ′
r, X

′
s] = 〈s, r〉X ′

s (r, s ∈ R).

(ii) N ′
r,s = ±1, if r + s ∈ R.

(iii) N ′
r,s is completely determined once an ordering on S has been fixed.

(iv) If [Xa, X−a] (a ∈ S) and Xr (r ∈ R) form a basis of L, then every automorphism

of R extends to an automorphism of L.

(v) In any case, every automorphism of R extends to an automorphism of the Lie

algebra with generators Ya (a ∈ R) and relations [Ya, Yb] = N ′
a,bYa+b (a, b being

independent roots).
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Proof. (After [1]). Fix an ordering on S. Let σ ∈ R+ be a non-simple root and let α

be the first simple root such that (σ, α) > 0. Then σ − α is a root but σ + α is not a

root.

(A) Applying the Jacobi identity to Xα, X−α, Xσ we find that Nα,σ−αNσ,−α = −1.

Hence Nα,σ−α is a unit; likewise N−α,−σ+α is also a unit, so scaling Xσ and X−σ we can

assume that Nα,σ−αN−α,−σ+α = −1: this is the normalization which (i) requires, as we

will soon see.

We next show that with this normalization we always have Nu,vN−u,−v = −1, u, v

being positive roots such that

u + v is a root. (∗)

Let σ = u+v, let α be the first simple root such that (σ, α) > 0 and let Ruvα denote

the integral closure of u, v, and α in R. If Ruvα is of type A2 then u, v form a basis of

Ruvα, so u or v is α, and (∗) holds by definition, and therefore also when height of σ is 2.

So suppose Ruvα is of type A3. Choose a simple system of roots, say a, b, c corresponding

to the positive system Ruvα ∩ R+. We may assume that 〈a, b〉 = 〈b, c〉 = −1 and

〈a, c〉 = 0. Then σ must be the sum of these simple roots. But σ has only two

decompositions as sums of two roots in Ruvα ∩R+, namely σ = a+(b+ c) = (a+ b)+ c

and α is a or c (so Na,b+cN−a,−b−c = −1 or Nc,a+bN−c,−a−b = −1).

By the Jacobi identity we have

Nb,cNb+c,a = Na,bNc,a+b,

N−b,−cN−b−c,−a = N−a,−bN−c,−a−b.

By induction on heights we also have Na,bN−a,−b = Nb,cN−b,−c = −1, so multiplying

the previous two equations and using the parenthetical remark above we find that

Nu,vN−u,−v = −1.

Let Hr = [Xr, X−r] (r ∈ R), with the Xr normalized as above. By assumption,

when r is simple, we have [Hr, Xs] = 〈r, s〉Xs and [H−r, Xs] = 〈−r, s〉Xs. Assume this
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is true for all roots of height less than N and that r is a root of height N . Let r = α+β,

where α ∈ S and (r, α) > 0.

Applying the Jacobi identity to Xα, Xβ, X−α−β we find that

NαβHα+β = Nβ,−α−βHα + N−α−β,αHβ. (∗∗)

As [Hα, Xβ] = 〈β, α〉Xβ as well as Nα,βNα+β,−α, Xβ, we have 〈α, β〉 = Nβ,αNα+β,−β.

Similarly, 〈−α,−β〉 = N−β,−αN−α−β,β. By induction on heights we have [Hβ, Xα] =

〈α, β〉Xα, so 〈−β,−α〉 = N−α,−βN−α−β,α. Multiplying (∗∗) by N−α,−β and using

Nα,βN−α,−β = −1 we have:

−Hα+β = N−α,−βNβ,−α−βHα + N−α,−βN−α−β,αHβ

= 〈α, β〉Hα + 〈β, α〉Hβ.

Hence Hα+β = Hα + Hβ, and therefore [Hr, Xs] = 〈r, s〉Xs for all s ∈ R. This proves

(i).

(B) To achieve (ii) we normalize Xσ and X−σ (htσ ≥ 2) so that Nα,σ−α = 1,

and N−α,−σ+α = −1. Arguing as in (A) we find that this normalization determines

all the constants Nu,v if u + v is a root and u, v are both positive or both negative.

Moreover, Nu,vN−u,−v is still −1 so [Hr, Xs] = 〈r, s〉Xs for all r, s ∈ R. This implies

that 〈u, v〉 = Nv,uNv+u,−v. By considering the roots in the integral closure of u and v

we find that remaining structure constants are also completely determined.

(C) The proof of the remaining assertions is implicit in steps (A) and (B) and is

left to the reader.

The following corollary has been known for some time: See [8, p. 51].

Corollary 1.2 [Steinberg]. The existence problem for semi-simple Lie algebras is

equivalent to the existence problem for Lie algebras whose root systems have no multiple

bonds.
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Proof. Given a root system R with multiple bonds there exists a root system R̃ with

no multiple bonds and an automorphism ρ of R̃ such that twisting R̃ according to ρ

one obtains R: see [6, p. 175] for details.

As a semisimple Lie algebra corresponding to the root system R̃ is of the type

considered above, we can extend the automorphism to an automorphism of this Lie

algebra and consider its fixed points: this will be a Lie algebra with root system R.

All of this follows from (1.1) and [7, p. 873–877]*.

Corollary 1.3 [3, p. 147]. Let R be a root system with no multiple bonds, L a

semisimple Lie algebra whose root system is R, S a simple system of roots and ρ an

automorphism of R which maps S into itself. If Lα (α ∈ R) are the root spaces of L

then there is an automorphism σ which maps Lα into L−α (α ∈ R) and which commutes

with ρ.

Proof. We can choose a system of generators Xα (α ∈ R) such that [Xα, Xβ] =

Nα,βXα+β(α + β �= 0) and [Xα, X−α; Xβ] = 〈β, α〉Xβ [4, p. VI-2]. The automorphisms

α → −α (α ∈ R) and σ commute and by (1.1) extend to commuting automorphisms

of L.

2 A Construction

Let R, R+ and S be as in § 1. Denote Rab... the integral closure of the roots a, b, . . . in

R. We wish to reverse the procedure given in the proof of (1.1) to construct a function

N , defined on pairs of positive roots such that:

(a) Nu,v = −Nv,u;

(b) Nu,v = 0 if u + v is not a root and Nu,v = ±1 otherwise;

(c) Nu,vNu+v,w + Nv,wNv+w,u + Nw,uNw+u,v = 0, for all u, v, w ∈ R+




. (2.1)

*See appendix
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We first record some properties of R which we require:

Lemma 2.1 Let u, v, w be distinct positive roots with u + v a root and w �= u + v:

(i) If 〈u + v, w〉 > 0 then either 〈u, w〉 = 1 and 〈v, w〉 = 0, or 〈u, w〉 = 0 and

〈v, w〉 = 1.

(ii) If u + v + w is a root then exactly two of u + v, v + w, w + u are roots.

This is a consequence of the assumptions on R, namely, if a, b are distinct roots and

a + b �= 0 then the Cartan integer 〈a, b〉 is 0, 1 or −1.

The following definition is more or less dictated by (2.1) and the Jacobi identity.

Definition 2.2 Fix an ordering on S. Let u, v be positive roots such that σ = u+v is a

root. Let α be the first simple root such that (σ, α) > 0. Set Nα,σ−α = 1, Nσ−α,α = −1.

If u, v are distinct from α define Nu,v and Nv,u, by induction on height of (u + v),

by the identities:

Nu−α,αNu,v + Nv,u−αNσ−α,α = 0, (∗)

Nv,u = −Nu,v, in case (u, α) = 1, (v, α) = 0, and

Nu,v−αNσ−α,α + Nv−α,αNv,u = 0, (∗∗)

Nu,v = −Nv,u, in case (u, α) = 0, (v, α) = 1. If u + v is not a root, set Nu,v = 0.

Proposition 2.3 Let u, v, w be positive roots and let N be as in (2.2). Then

Nu,vNu+v,w + Nv,wNv+w,u + Nw,uNw+u,v = 0. (∗)

Proof. If σ = u+v+w is not a root then there is nothing to prove. So let σ be a root.

We may assume that u + v, v + w are roots but u + w is not a root (2.2): call such a

triple (u, v, w) an A3-triple. Denote the left-hand side of (∗) by J(u, v, w). Let α be

the first simple root such that 〈σ, α〉 > 0. If α is one of u, v or w then (∗) follows from
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the definition of N . So assume α is distinct from u, v and w. Then, by (2.2), we have

〈u + v, α〉 = 1 and 〈w, α〉 = 0 or 〈u + v, α〉 = 0 and 〈w, α〉 = 1. Now we express, using

(2.3), J(u, v, w) as a linear combination of J(u′, v′, w′) with height of (u′ + v′ +w′) less

than height of (u + v + w) and apply induction. The details are as follows:

(A) Suppose 〈u + v, α〉 = 1 (and 〈w, α〉 = 0). Then 〈u, α〉 = 1 and 〈v, α〉 = 0 or

〈v, α〉 = 1 and 〈u, α〉 = 0. In the first case J(u, v, w) is, by definition of N ,

Nu,vNu+v−α,w(Nα,u+v−α)−1 + Nv,wNv+w,u−α(Nα,u−α)−1.

Hence

(Nα,u−α)J(u, v, w) ≡ J(u − α, v, w) (using (2.3 (∗)).

In case (u, α) = 0, (v, α) = 1, (w, α) = 0 we have

J(u, v, w) ≡ J(u, v − α, w).

(B) Suppose 〈u + v, α〉 = 0 and 〈w, α〉 = 1. Then 〈u, α〉 = 〈v, α〉 = 0 or 〈u, α〉 =

1, 〈v, α〉 = −1: 〈v, α〉 cannot be 1, else 〈v + w, α〉 would be 2, i.e., v + w would be a

simple root.

The first case follows by symmetry from (A). So suppose 〈u, α〉 = 1, 〈v, α〉 = −1.

Then (u − α, w, v) and (w − α, u, v) are A3-triples. In this case

J(u, v, w) = Nu,vNu+v,w−α(Nα,w−α)−1 + Nv,wNv+w,u−α(Nα,u−α)−1.

Now

0 = J(u − α, w, v) = Nu−α,wNu+w−α,v + Nw,vNw+v,u−α

0 = J(w − α, u, v) = Nw−α,uNw−α+u,v + Nu,vNu+v,w−α.

Dividing the second equation by Nα,w−α, the first by Nα,u−α, setting c = Nu+w−α,v and

subtracting we see that

0 = [(Nw−α,u(Nα,w−α)−1 − Nu−α,w(Nα,u−α)−1]c + J(u, v, w),
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i.e.,

0 = J(α, u − α, w − α)c + Nα,u−αNα,w−αJ(u, v, w).

Since J(α, u − α, w − α) = 0 we see that J(u, v, w) = 0. This completes the proof of

(2.4).

We now extend the function N of (2.3) to a function Ñ , defined on all pairs of roots

u, v such that (u + v) �= 0, and having the properties (2.1) (a, b, c). This extension is

again forced upon us by (1.1).

Definition 2.4 Let u be a positive root and v a root such that u + v is a root. If v

is positive, set Ñu,v = Nu,v and define Ñ−u,−v by: Nu,vÑ−u,−v = −1. If v is negative

define Ñu,v by the equation:

Ñu,vNu+v,−v + 〈v, u〉 = 0,

in case u + v is positive, and by:

Ñu,vÑu+v,−u − 〈u, v〉 = 0,

in case u + v is negative.

Set Ñv,u = −Ñu,v. Finally, let Ña,b = 0 if a + b is not a root.

Corollary 2.5 Let Ñ be as in (2.5). If u, v, w are roots and Ru,v,w is of rank 3 then

Ñu,vÑu+v,w + Ñv,wÑv+w,u + Ñw,uÑw+u,v = 0. (∗)

Proof. For notational convenience, denote Ñ by N . It suffices to assume that σ =

u + v + w is a root. As in (2.2), we may also assume that u + v, v + w are roots but

u + w is not a root. Denote the left hand side of (∗) by J(u, v, w).

Now (∗) is true when u, v, w are all positive or all negative, so we may assume that

v is positive. As Na,b = Nb,a for all roots a, b we may also assume that u ∈ R+ and

w ∈ R−. So we have the following possibilities:
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(A) v + w ∈ R+: Here J(u, v, w) ≡ Nu,vNσ,−w + Nv+w,−w. Nv+w,u. We have

J(u, v + w,−w) = 0. Writing this out and multiplying by Nu,v+wNv,u we find that the

relation so obtained is equivalent to J(u, v, w) being 0.

(B) v + w ∈ R− and u + (v + w) ∈ R+: Here the relation to be checked becomes

Nu,vNσ,−w + Nv,−v−wNσ,−v−w = 0. Now J(σ,−v − w, v) = 0. We multiply this by

Nσ,−wNσ,−v−w to get the desired result.

(C) v + w ∈ R−, u + (v + w) ∈ R−: In this case the relation J(u, v, w) = 0 is

equivalent to

Nu,vN−σ,u+v + Nv,−v−wN−σ,u = 0,

the left hand side of which is J(−σ, u, v). This completes the proof of (2.6).

3 The Lie Algebra LR(A)

Let A be a commutative ring. Using (2.5), it is now easy to construct a Lie algebra

LR(A) such that every automorphism of R extends to an automorphism of LR(A). We

take LR(A) to be the free A-module with basis Ha(a ∈ S), Xb(b ∈ R). For u, v both

positive or negative let [Xu, Xv] = Ñu,vXu+v, Ñ being as in (2.5). If a ∈ S, set Ha =

[Xa, X−a], and if σ ∈ R+ and (σ, a) > 0, set Hσ = Ha + Hσ−a, and [Xσ, X−σ] = Hσ.

Defining, for a simple root a and an arbitrary root b [Ha, Xb] to be 〈b, a〉Xa, requiring

this operation to be bilinear and anti-symmetric (i.e., [X, X] = 0 for all X ∈ LR(A))

the reader will find that LR(A) is now a Lie algebra over A with the stated properties.

Clearly, LR(A) ∼= LR(Z)
⊗

Z A. Moreover, ad X3
a = 0 (a ∈ R) and 1

2
ad X2

a maps

LR(Z) into itself. These remarks, which are trivial to check, will play an role in the

following section.

4 The Functor GR(A)

Let R be an irreducible root system of rank � 2, A a commutative ring with unity and

A∗ the group of units of A. Let G be a group with generators xa(u) (a ∈ R, u ∈ A)
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which satisfy the following relations:

(R1) xa(u + v) = xa(u)xa(v) (u, v ∈ A, a ∈ R).

(R2) If a, b are linearly independent roots then the commutator

(xa(u), xb(v)) =
∏

ia+jb∈R
i,j>0

xia+jb(Na,b,i,ju
ivj),

where Na,b,i,j are elements of A and the product on the right hand side is taken

in some ordering of the roots ia + jb (i, j > 0).

(R3) If J is an integrally closed irreducible subsystem of R of rank at most 3, J+ a

positive system of roots in J and an ordering of the roots in J+ has been fixed,

then every element x of the group generated by xr(u)(r ∈ J+, u ∈ A) has a

unique expression

x =
∏

r∈J+

xr(ur),

the product on the right hand side being taken in the chosen ordering of roots in

J+. [In case R has no multiple bonds we need only assume that rank(J) � 2].

(R4) If a, b are independent roots and u ∈ A∗ then

wa(u)Ubwa(u)−1 = Uwa(b),

where wa(u) = xa(u)x−a(−u−1)xa(u), wa is the reflection along the root a and

Ur (r ∈ R) is the group generated by xr(u)(u ∈ A).

It is shown in [1] that every group with the above properties is homomorphic image

of a single group GR(A), which is determined up to isomorphism by the system R and

the ring A: in particular, every automorphism of R extends to an automorphism of

GR(A) (see remarks following statement of the proposition in [1]*).

*For the case of G2, see [9, p. 295]
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To prove the existence of GR(A) we first assume that R has no multiple bonds. Let

LR(A) be the Lie algebra as defined in (2.7). Recall that the Steinberg group StR(A)

is the group with generators x′
a(u) (a ∈ R, u ∈ A) subject to the relations

(A) x′
a(u + u′) = x′

a(u)x′
a(u

′) (u, u ∈ A, a ∈ R)

(B) (x′
a(u), x′

b(v) = x′
a+b(N

′
abuv), if u + v ∈ R

= 1 , if u + v �∈ R.

Here the N ′
ab are as in Proposition (1.1).

This group has a representation in Aut(LR(A)), namely, map x′
a(u) into the formal

exponential

xa(u) = 1 + (ad Xa) ⊗ u +
ad(X2

a)

2!
⊗ u2.

Here xa is a basis element of LR(A) as given in (2.7), and the formal exponential has

only two terms because R has no multiple bonds.

Straightforward calculations show that the group Gad,R
(A) generated by xa(u)(a ∈

R, u ∈ A) satisfies (R1), (R2) and (R4). In fact wa(u)xb(v)wa(u)−1 = xa+b(N
′
a,buv) if

a + b is a root. To see that (R3) holds we need an auxiliary lemma.

Let Ur(r ∈ R) be the group generated by xr(u) (u ∈ A), let R+ be a positive system

of roots and let a1, . . . , aN be all the elements of R+ listed so that ht(ai) � ht(aj) if

i � j. Let U+ be the group generated by the subgroups Ur(r ∈ R+).

Lemma 4.1 [2, p. 39]. Every element x of U+ has a unique expression

x =
∏

i=1,...,N

xai
(ui).

Proof. The commutator formula (R2) implies that x has an expression of the above

form. Let S be the simple system of roots which corresponds to R+ and let LR(A) be

the Lie algebra s defined in (2.7) with Ha(a ∈ S, Xb(b ∈ R) as a basis. Let U+ and U−

be the subalgebras generated by Xr(r ∈ R+) and X ′
r(r

′ ∈ R−), respectively.
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Now if u, v are positive roots and ht(u) > ht(v) then either u − v is not a root, or

else it is a positive root; and if ht(u) = ht(v) then u − v is not a root. Moreover, if u

and v are distinct then xu(t)X−v = X−v + tNu,−vXu−v. Therefore if x =
∏

i=1,...,N

xai
(ui)

then

x(X−a1) ≡ xa1(u1)(Xa1)(mod U+)

≡ X−a1 + u1[Xx1, X−a1 ](mod U+)

≡ u1Ha1(mod(U+ + U−)).

As LR(A) = H + U+ + U−, we see that u1Ha1 is uniquely determined by x. As rank

R � 2, there exists some root b with 〈b, a〉 = 1. This means that u1 is uniquely

determined by x. Therefore if x =
∏

xai
(u′

i), then u1 = u′
1. Canceling xa1(u1) we

continue and conclude that ui = u′
i for all i.

From Proposition (1.1) it is clear that if σ is an automorphism of R then it extends

to an automorphism σ̃ of LR(A) as well as of StR(A) and we have:

σ̃Xa = caXσ(a), σ̃(x′
a(u)) = x′

σ(a)(cau), ca = ±1 and cac−a = 1

(because Ha = [Xa, X−a] and σ̃(Ha) = Hσ(a)).

Moreover σ̃(ad Xa)(σ̃)−1 = ad(σ̃Xa) and this means that σ̃ normalizes Gad,R
(A).

Suppose σ̃ fixes a positive system of roots R+ in R. It follows by using (1.1) and

[6, p. 172–175] or [7, p. 875–877] that the fixed points of σ̃ in Gad,R
(A) contain a

group which satisfies the relations (R1), . . . , (R4), with R replaced by the root system

obtained by twisting R according to σ.* This proves the existence of the groups in

question.

Finally, let K be the normal subgroup of StR(A) generated by

w′
a(t)x

′
a(u)w′

a(t)
−1x′

−a(−t−2u)

*See appendix, pp. 17–19.
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and

ha(tt
′)ha(t

′)−1ha(t)
−1 (a ∈ R, t, t′ ∈ A∗, u ∈ A),

where

w′
a(t) = x′

a(t)x
′
−a(−t−1)x′

a(t) and ha(t) = w′
a(t)w

′
a(−1) :

note that σ̃(K) = K.

It is shown in [6, p. 66] that when A is a field the group StR(A)/K is isomorphic to

the universal Chevalley group corresponding to the system R, and hence (StR(A)/K)σ̃

is isomorphic to the universal Chevalley group corresponding to the system obtained

by twisting R according to σ [cf. 6, p. 172].

Therefore the subgroups (StR(A)/K)σ̃ − σ being any automorphism of R – are ap-

propriate generalizations of Chevalley groups. For example, in this way, one obtains

the maximal compact subgroups of some real Lie groups. In this connection, see also

[2, p. 65].

Remark 4.2 For some applications it is useful to replace the relations (R3) of § 3 by

(a) If J is an integrally closed irreducible subsystem of R of rank at most 2, J+ a

positive system of roots in J and an ordering of the roots J+ has been fixed, then

every element x of the group generated by xr(u) (r ∈ J+, u ∈ A) has a unique

expression

x =
∏

r∈J+

xr(ur).

the product on the right hand side being taken in the chosen ordering of roots in

J+.

(b) If a, b, c are positive roots such that a + b, b + c and a + c are not roots then

every element x of the group generated by xr(u)(r = a, b, c, u ∈ A) has a unique

expression

x = xa(u)xb(v)xc(w).

13



[In case R has no multiple bonds we need only assume (R3) (a)].

5 Appendix

Let L, R, S, A and Xr(r ∈ R) be as in § 1. Assume that [Xa, X−a] (a ∈ S) and Xr(r ∈
R) form a basis of L over A. In view of (1.1) we may, after a suitable normalization of

the generators, also assume that for all roots r and s

[[Xr, X−r], Xs] = 〈s, r〉Xs. (∗∗)

It then follows (cf. 1.1)) that if S ′ is any simple system of roots in R and σ an

automorphism of R, then the mapping Xa → Xσ(a) (a ∈ S ′ ∪ −S ′) extends to an

automorphism of L, and of the group GR(A) of § 3, and this extension is unique.

From now on, we assume that the generators of L have been chosen so as to satisfy

(∗). Furthermore, that σ is an automorphism of R which maps S into itself (so σ is of

order 2 or 3). The unique extension of the mapping Xa → Xσ(a)(a ∈ S ∪ −S) will be

denoted by σ̃.

5.1

σ̃(Xr) = Xr whenever σ(r) = r, unless R is of type A2m, in which case σ̃(Xr) = −Xr

whenever σ(r) = r.

Proof. First, suppose that σ is of order 2 and R is not of type A2m. Let r be a positive

root fixed by σ. If r is simple then σ̃(Xr) = Xr. So let r = α + β(α ∈ S, β ∈ R+).

Denoting images under σ by primes, we have r = r′ = α′+β ′, so Rαβα′ is an irreducible

root system, with Rαβα′ ∩ R+ as a positive system of roots, and α, α′ remain simple

roots of this subsystem.

If Rαβα′ is of type A2 then we must have α = α′, otherwise α + α′ would be

root, and since α, α′ are both simple, this is only possible if R is of type A2m. Hence

α = α′, β = β ′ and σ̃[Xα, Xβ] = [Xα, Xβ] (by induction on heights). If Rαβα′ is of type

A3 (so α �= α′) then there is a root u of this subsystem such that

14



� � �
�

is its Dynkin diagram, and such that r = α + u + α′, As u = u′ we have σ̃(Xu) = Xu,

by induction on heights. Moreover σ̃[Xα, Xu; Xα′] = [Xα′Xu; Xα] = [Xα, Xu; Xα′] (by

Jacobi), hence σ̃(Xr) = Xr.

If R is of type A2m and σ of order 2, then σ does not fix any simple root. There is

a unique simple root α such that α + α′ is a root and so σ̃[XαXα′ ] = −[Xα, Xα′ ]. An

argument similar to the one just given shows that σ̃(Xr) = −Xr whenever σ(r) = r.

There remains the case: R is of type D4 and σ3 = 1, σ �= 1. Label the Dynkin

diagram of D4 as

� �

��

��

The non-simple positive roots are a + b, b + c, b + d, a + (b + c), a + (b + d), c + (b +

d), a + (b + c + d), b + (a + b + c + d). Fixing the order a < b < c < d on S and using

(1.1) (B), we may assume that Na,b = Nb,c = Nb,d = 1, Na,b+c = Na,b+d = 1, Nc,b+d =

1, Na,b+c+d = Nb,a+b+c+d = 1; moreover if u, v are roots such that Nu,v �= 0 then Nu,v

N−u,−v = −1. The non-simple positive roots left fixed by σ are a + b + c + d and

a + 2b + c + d.

Now

σ[Xa, [Xc, [Xb, Xd]]] = Nd,a+bNb,aNc,a+b+dXa+b+c+d

and

[Xa, [Xc, [Xb, Xd]]] = Na,c+b+dNc,b+dNb,dXa+b+c+d.

Using the above data, one can check that the right hand sides of the last two equations

are equal. The verification for the root b + (a + b + c + d), which is similar, completes

the proof of (4.1).
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The following lemma is well known: a version occurs in [2, pp. 19–20], and 4.2 (i)

can also be extracted from [7, p. 877, line 14]. We need it in the following form.

5.2

Let R be not of type A2m and let σ be of order 2. Denote images under σ by primes:

(i) For all roots r, we have r + r′ is not a root.

(ii) If r = r′, s �= s′, r and s are non-orthogonal, then Rrss′ is irreducible of rank 3

and σ acts as a non-trivial permutation on R+ ∩ Rrss′.

(iii) If r �= r′, s �= s′ are roots such that r+ξs ∈ R(ξ = ±1) then either r+ξs = r′+ξs′,

in which case Rrsr′s′ is irreducible of rank 3 and σ acts non-trivially or Rrsr′s′∩R+,

or else 〈r, s′〉 = 〈r′, s〉 = 0.

Proof. We may assure that r is a positive root. As σ preserves heights, it is clear that

r − r′ is not a root. Suppose r + r′ is a root. As R is not of type A2m, r cannot be

simple, so r = α + β (α ∈ S, β ∈ R+). As α + β, α′ + β ′ and r + r′ are roots, we see

that Rαβα′β′ is an irreducible root system of rank 4 at most hence is of type A2, A3, A4

or D4, and σ acts as a non-trivial permutation on R+ ∩ Rαβα′β′ . One checks that if τ

is an involutary automorphism of a system of type A3 or D4, fixing a positive system

of roots, then there is no root r such that (r + τr) is a root. Hence Rαβα′β′ must be of

type A2 or A4, with α, α′ occuring as distinct simple roots in Rαβα′β′ ∩R+. As R is not

of type A2m we see that α+α′ is not a root, hence the Dynkin diagram of Rαβα′β′ ∩R+

must be

�� � �
�

and r is then α + u or v + α′. As σ must permute α, α′ and u, v, respectively, we see
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that u is a root of lower height than r such that (u + u′) is a root. By induction on

heights, it follows that r + r′ is not a root.

Let r = r′, s �= s′ be roots such that r + ξs is a root (ξ = ±1). Now Rrss′ is

irreducible of rank 3 at most; its rank by (i) cannot be 2 as Rrss′ ∩ R+ admits a

permutation of order 2. This proves (ii).

Finally, let r and s be non-orthogonal roots such that r �= r′, s �= s′. Let r + ξs be a

root. As r± r′ and s± s′ are not roots, we see that 〈r + ξs, r′ + ξs′〉 = 2ξ〈r, s′〉. Hence

either r + ξs = r′ + ξs′ or else 〈r, s′〉 = 〈r′, s〉 = 0. This proves (iii).

Remark 5.1 The proof of (i) also shows that R is of type A2m and

� � � � � �

�� ��
�
��� ���

is its Dynkin diagram then the positive roots of R such that r = r′ are

{αm + αm+1, αm−1 + αm + αm+1 + αm+2, . . . , α1 +

+ αm + αm+1 + · · · + α2m}

Proposition 5.2 [7, p. 875–877]. Let V denote the real span of R and fix a positive

definite inner product on R relative to which elements of the Weyl group and σ become

isometries. For v ∈ V , let ṽ denote the orthogonal projection of V on Vσ, where

Vσ = {v ∈ V |σ(v) = v}. Then R̃ = {r̃ : r ∈ R} is an irreducible reduced root system

in Vσ and the distinct elements of {α̃ : α ∈ S} form a fundamental system of roots of

R̃, unless R is of type A2m in which case it is of type BCm.

The reader is referred to [6, p. 172] or [7, pp. 875–877] for details. In the case

which interests us here, namely R is not of type A2m, this also follows, as we show

presently, from (5.2), when σ2 = 1, and by explicit computations as in (5.1) when

σ3 = 1. Let σ2 = 1(σ �= 1) and ωã denote the reflection in the hyplane orthogonal
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to ã. In view of (5.2), to see that ωã(R̃) = R̃, we have only to verify this when R is

of type A3 or A2 × A2 with σ interchanging the two components in the latter case:

this verification is easy, using (5.2) (ii) and (iii), and will also show that 〈ã, b̃〉 ∈ Z.

Therefore R̃ is a root system in the sense of [4, p. V-3] and every element of R̃ is an

integral linear combination of elements of S̃. Defining height with respect to S̃ and

using the integrality condition 〈ã, b̃〉 ∈ Z we see that if r is a positive root and 2r̃ ∈ R̃

the 2ã (a ∈ S) is also in R̃, say 2ã = s̃(s ∈ R+). So s must be a linear combination

of the transforms of a under σ. The condition 2ã = s̃ implies that Raa′ is of type A2

and s = a + a′. As a, a′ are both simple, this is only possible when R is of type A2m.

Now σωãσ
−1 = ωã(a ∈ R) so [2, p. 19, Lemma 1] or [5, p. 234, 11.1.4] implies that

if ã and b̃ are linearly independent roots such that a is orthogonal to all transforms of

b under σ then R̃ã,̃b the integral closure of ã, b̃ in R̃, is of type A1 × A1.

Let U+ and U− be the subalgebras of L generated by Xr(r ∈ R+) and Xs(s ∈ R−),

respectively. Let H be the subalgebra generated by Ha(a ∈ S). Clearly Lσ̃ = U+
σ̃ ⊕

Hσ̃ ⊕U−
σ̃ . For each root α ∈ R̃ choose a root r such that α = r̃ and define Xα and Hα

to be the sums of the distinct transforms of Xr and Hr, respectively, under σ̃. Now

using (5.2), and (5.1) in case σ is of order 3, the reader can check that [Xα, X−α] = Hα

[Hα, Xβ] = 〈β, α〉Xβ and [Xα, Xβ] =




0 if α + β �∈ R̃

Nα,βXα+β if α + β ∈ R̃,

Nα,β being some constants.

In particular, taking A = C and using the fact that the Cartan matrix (〈r̃, s̃〉) is

non-singular, where r, s run through a set of representatives of the orbits of S under

σ, we see that LR(C)σ̃ is a semi-simple algebra whose root system is R̃. This proves

(1.2).

Finally, consider the group Gad,R
(A) of § 3. The automorphism σ of R extends to

an automorphism σ̃ of Gad,R
(A). For each root α ∈ R̃, choose a root r ∈ R such that

α = r̃. Define xα(a) to be product of the distinct transforms of xr(a) under σ and let
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Uα be the group generated by xα(a)(a ∈ A). Using (5.2) and, in case σ is of order

3, the normalization of the structure constants of D4 as given in (5.1), the reader can

check that the group generated by xα(a)(α ∈ R̃, a ∈ A) satisfies the relations (R1),

(R2) and (R4) of § 3. As the group generated by Uα(α ∈ R̃+) is a subgroup of the

group U+
σ̃ , the commutator formula and the lemma in § 3 implies that the generators

xα(a) satisfy the relations (R3) also: see [6, § 11, p. 180, Lemma 62] for details.
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