
MATLAB Workshop
Dr. M. T. Mustafa

Department of Mathematical Sciences

Introductory remarks

• MATLAB: a product of mathworks
www.mathworks.com
MATrix LABoratory

• What can we do (in or) with MATLAB
o Use like a calculator
o Graphics & visualization
o Symbolic computation
o Numerics
o Use as a programming language
o Solve applied & industrial problems using its sophisticated tool boxes

Selected list of toolboxes
 Optimization toolbox
 Statistics toolbox
 Symbolic Math toolbox
 PDE toolbox
 Curve fitting toolbox
 Spline toolbox
 Image processing toolbox
 Wavelet toolbox
 Control system toolbox
 Fuzzy logic toolbox
 Financial derivative toolbox

Contents of workshop (PART I):

1. Getting started

1.1 Staring MATLAB
1.2 Quitting and interrupting MATLAB
1.3 Asking for help
1.4 Command line editing

2. Simple computations in MATLAB
3. Vectors

3.1 Building vectors
3.2 Vector operations and functions
3.3 Dot operation

4. Two dimensional graphics
4.1 XY plots
4.2 Saving, re-using and printing graphs
4.3 Plotting parametric equations
4.4 Plotting polar equations

5. Few words about script files

A matrix based system for scientific
computation & visualization.

1. Getting started

1.1 Starting MATLAB

By double clicking on MATLAB icon
or by using the menus: Start, Programs, Matlab

1.2 Quitting & interrupting MATLAB

Type quit in command window
or use menus: File, Exit Matlab
To interrupt: Use ctrl-C

1.3 Asking for help
>> helpwin
>> helpdesk
>> demo
We can also obtain information about a particular function or command, for
example
>> help sqrt
or
>> lookfor sqrt

1.4 Command line editing
Command lines are entered in the command window, in front of MATLAB
prompt >>. A command line consists of one or more statements separated by
semicolons.
For example
>> a=3; [This assigns the value 3 to the variable "a"]
>> b=4; c=5;
Try
>> a+b+c
or
>> d=a+b+c as well as >> d=a+b+c ; [do you see any difference in the output]

Few useful points to note:

 Every command line terminates with an <Enter>
 A single command line can have more than one statement
 The use of semi-colon
 How to recall previous commands

screen shot of the Matlab window

command window

optional windows

workspace
current directory type commands here

2. Simple computations in MATLAB
(using built in scalar functions)

• Basic operations
'+' addition, '-' subtraction, '*' multiplication,
'/ 'right division, '\' left division, '^' exponentiation

• MATLAB has many built in functions which operate on scalars as well as
element-wise on vectors & matrices (as we will see later). These can be used
as commands or part of a command.

Elementary math functions
abs
angle
sqrt
real
imag
conj
gcd
lcm
round
fix
floor
ceil
sign
rem
exp
log
log10

Absolute value or complex magnitude
Phase angle
Square root
Real part
Imaginary part
Complex conjugate
Greatest common divisor
Least common multiple
Round to nearest integer
Round towards 0
Round towards −∞
Round towards ∞
Signum functions
Remainder
Exponential base e
Natural logarithm
Log base 10

Trigonometric & hyperbolic functions
sin, asin, sinh, asinh
cos, acos, cosh, acosh
tan, atan, tanh, atanh
cot, acot, coth, acoth
sec, asec, sech, asech
csc, acsc, csch, acsch

sine, arcsine, hyperbolic sine, hyperbolic arcsine
cosine, arccosine, hyperbolic cosine, hyperbolic arccosine
tangent, arctangent, hyperbolic tangent, hyperbolic arctangent
cotangent, arccotangent, hyperbolic cotangent, hyperbolic arccotang
secant, arcsecant, hyperbolic secant, hyperbolic arcsecant
cosecant, arccosecant, hyperbolic cosecant, hyperbolic arccosecant

Examples:
>> sqrt(26.5)
>> x=4; y=sin(x) [for trig. functions, MATLAB works in radians]

See what the output of following is:
>> cos(pi/3)*abs(-10)

>> log(exp(2))+log10(exp(2))

>> rem(13,3)

• We can have more information by help command.
Check
>> help rem
To get information about elementary functions, start for example from
>> help elfun

3. Vectors

MATLAB is a vector or matrix oriented software. It is important to get a good grip on
generating, manipulating and applying different operations on vectors.

3.1 Building vectors

• By directly typing as

>> a = [1, 3, 5, 7, 9]
or
>> a= [1 3 5 7 9] See the output on your screen

• By specifying the stepsize from the starting point to ending point

>> a=1:2:9
or check the output on your screen
>> a=[1:2:9]
means: start with 1, increase in steps of size 2 and end with 9.

Exercise 1
Check what happens with the commands
>> b = [6 4 2 0]
>> b = 6:-2:0
>> b = 6:-2:-1

• By specifying the number of elements in the vector

o Specify the number of (equally spaced) points between the starting
point and end points

o Most practical method

Examples
>> a = linspace(1,5,7) check the output on your screen
Creates a vector of 7 equally spaced points from 1 to 5

 >> v = linspace(-10,10,500);

 What do you get if you try
 >> length(v)
 or
 >> size(v)

• By using built in functions

MATLAB provides commands to directly generate some specific vectors and
matrices

For example,
>> b = zeros(1,N)
creates a vector of length N (or a 1-by-N matrix) with zero entries

Now type
>> size(a)

What do you think will be output of
>> zeros(size(a))

What is your guess about the output of following?
>> ones(size(a))
or
>> ones(1,7)

>> rand(size(a)) [uniformly distributed random entries]

>> randn(1,7) [normally distributed random entries]

• By piecing together two vectors

For example
>> a = [1 3 5];
>> b = [2 4 6];
Then
>> c = [a b]
creates the vector c=[1 3 5 2 4 6]

 Exercise 2 {How to access entries of vector}
 Create a vector "a" of 5 values from 0 to 2. What is the 3rd value. Set the

3rd value as 7.
 [Hint: the ith entry of vector a can be accessed as a(i)]

3.2 Vector operations and functions

• Addition, subtraction of vectors (as usual)

Here are a few examples
>> A=[1 2 3 4]; B= [2 1 0 4]
>> C = A+B;
>> A = A-B;

• Transpose

See what happens with command
>> D = A'

• Product

Done as a matrix product
Try the following commands and check the output
>> A*A'
>> A'*A
>> V = [1 2 3]
>> A*V

• Multiplication, division by a scalar

As usual, for example
>> a=2;
>> a*A produces [2 4 6 8]
>> (a*A)/2 produces [1 2 3 4]

• Addition/subtraction of a scalar

To understand this point, see what happens if you type
>> c = A+100;
>> c-50

• Scalar functions on vectors

The operation explained here is very useful for many purposes. All the built in
scalar functions (introduced in section 2) operate on vectors (as well as
matrices) element-wise.

Here are a few examples. Try these or use scalar functions of your liking.
>> A=1:4;

>> log(A)

>> sqrt(A)

Exercise 3
Construct a vector x containing 8 values, starting with 0 and ending
withπ . Next construct a vector y which contains sine of the entries of the
vector x. What is the sum of the 4th elements of x and y.

• Vector functions

The following examples illustrate some of the vector functions.

>> v = [-7 3 5];

sum(v) = 1 [adds elements of v]

max(v)=3 [gives the maximum element]

abs(v)=[7 3 5]

sort(-v)= [-5 -3 7] [sorts in increasing order]

median(v)=3 [gives median of the elements]

mean(v)=0.3333 [gives mean of the elements]

std(v)=6.4291 [gives the standard deviation]

 Exercise 4 {help is indeed help}
 Type
 >> help rand [to know details about & behind this command]
 Now type
 >> v = rand(1,1000);
 What to you expect the mean of the elements of v to be? Compare your

answer with MATLAB output.

3.3 Dot operation

 This is another frequently used operation of MATLAB. This can be used to

enforce MATLAB to perform an entry-wise operation.

Try following examples to learn more about it.

 >> a = [2 4 6]; b = [1 -3 2];

 >> a*b

 >> a.*b

 >> a./b

 >> a.^2

 >> a.^b

Exercise 5

Create a vector x from 1 to 4 with four elements and a vector y from 4 to -
3 with step size -2.
Find [max(b.^a) – min(b.^a)]. Find sin(a.*b).

Exercise 6

Create a vector v containing integers from 10 to 100. How can you create
a vector w containing elements which are reciprocals of the corresponding
elements of v.

Exercise 7

What do you expect the outcome of following command line to be?
>> v=[1 4 16 25]; z = (sqrt(v)).^2

4. Two dimensional graphics

4.1 XY plots
 If we want to plot the graph of y = f(x) by hand, one way is
 Make a list of X-values
 Compute corresponding Y-values
 Plot the point (x,y) and connect.

 MATLAB does exactly the same thing. The command

 >> plot(X,Y)

 produces a graph of the elements of vector X versus the corresponding
elements of the vector Y.

 We learn more via examples.

 Example To plot siny x= on [0,2]π
 The following set of commands produces the required graph.
 >> X = linspace(0,2*pi,50);
 >> Y = sin(X);
 >> plot(X,Y) compare your output with others

 Example {more than one graphs in one window}

 To plot 2()
1

xf x
x

=
+

and
2

2()
1

xg x
x

=
+

 on [2,2]− .

 We need the following set of commands

 >> x = linspace(-2,2,100);
 >> y1 = x./(1+x.^2);
 >> plot(x,y1)
 >> hold on [freezes the current graph window]
 >> y2 = (x.^2)./(1+x.^2);
 >> plot(x,y2) compare your output with others
 >> hold off [releases the hold]

 Optional arguments

• The graphs can be given titles, axes labels etc using the menu of graph
window or by different commands.

>> title('My useless graph')
>> xlabel('X')
>> ylabel('do not know')
>> grid on

• Line types: Using graph window or

Solid(-), dashed(--), dotted(:)

• Mark types Using graph window or
Point(.), plus(+), circle(o)

• Colors Using graph window or
Red(r), green(g), blue(b)

4.2 Saving, re-using and printing graphs

• One option is to save (using graph window menu) as fig file. The advantage of
this option is that you can open these again in MATLAB and edit if needed.

• Another option is to export (using graph window menu) as bmp or jpg or eps
file as required. The advantage of this option is that you can use these
elsewhere, e.g. in MSWORD, LaTeX, Powerpoint etc.

Exercise 8

Make the graphs of 





=

x
xxf 1cos)(2 , 2)(xxg −= and 2)(xxh = in

one window and complete a transparency like the following (using MS word). A
file sandwich.doc is on your desktop, you are required to make the graphs and
include those in the word file.

Geometric demonstration of the squeezing theorem

Squeezing of 





=

x
xxf 1cos)(2 between 2)(xxg −= and 2)(xxh =

4.3 Plotting parametric equations
 Plots of parametrically defined curves can also be made in a manner similar to

XY-plots.

 For example, the following commands plot sin 2 , cos3x t y t= = over
[0,2]π .

 >> t = 0: 0.001:2*pi;
 >> x = sin(2*t); y= cos(3*t);
 >> plot(x,y) compare your output with others
 >> title('Lissajous figure')

 Exercise 9

 Plot the circle 2 2 1x y+ = using parametric representation.
 Do you see any problem? Did you get a figure looking like an ellipse.
 Now open another figure window by the command
 >> figure
 and plot the same graph here using
 >> plot(x,y)
 and then type
 >> axis equal
 Can you see what was the problem with previous figure.
 Related useful commands are
 >> axis equal [creates equal scales on the axes]
 >> axis normal [returns to MATLAB's original scaling]
 Check
 >> help axis
 for more information.

 Exercise 10

 Plot
3131cos 7cos()
7

x t t= − ,
3131sin 7sin()
7

y t t= −

 0 14t π≤ ≤
 to get a figure like the following. Also compare your output with

Figure1.8.9 page 91 of Calculus (7th edition) by Anton.

4.4 Plotting polar equations
 Plot in polar coordinates can be done using the command polar(theta,r) where

theta is the angle in radians and r is the radius vector.
 This is illustrated below.

 Example Graph of 3 4cosr θ= +
 The following set of commands

>> theta = linspace(0,2*pi,100);
>> r = 3 + 4*cos(theta);
>> polar(theta,r)

produce

Exercise 11 [Q.56, Ex. 11.1, Calculus (7th edition) by Anton]

 The accompanying figure shows the graph of the "butterfly curve"

 cos 32cos4 sin
4

r e θ θθ= − + .

 Generate the complete butterfly with MATLAB and state the parameter
interval you used.

Example {more than one polar graphs in one window}
To plot 4cos2r θ= and 2r = in one window.

A script file consisting of following commands produces the desired graphs.

Commands to be written in script file

The graphs produced by above script file are as follows.

Exercise 12
Plot the following polar curves in one window
 2(1 cos)r θ= + .
 2(1 cos)r θ= −

clear all
close all
theta=linspace(0,2*pi,100);
r1=4*cos(2*theta);
polar(theta,r1)
hold on
r2=2+0*theta;
pause
polar(theta,r2,'r')
title('Two polar graphs in one window')
hold off

Viewing a polar graph as it is traced
In some of the polar curves (for example those with many loops or petals) it
may be useful to show the graph as it is traced. We will do it with the help of
very simple MATLAB program which explained in the example below.

Example {To show the graph as it is traced}
To plot the rose with 8 leaves given by equation 2sin 4r θ= . Further write
a program such that the graph is shown as it is traced.

A script file consisting of following commands

Commands to be written in script file

produce

In order to view the tracing of graph we shall use the following script file
whose commands will be explained in the workshop session 2.

clear all
close all
theta=linspace(0,2*pi,100);
r=2*sin(4*theta);
polar(theta,r)

clear all
close all
x=linspace(0,2*pi,100);
figure
theta=x(1);
for i=2:100

theta=[theta x(i)];
 r=2*sin(4*theta);
 polar(theta,r);

drawnow
end

Exercise 13 {Rose within a rose
Plot the following polar curve
 1 2sin3r θ= − .
Further write a program such that the graph is shown as it is traced.

5. Few words about script files

• Covered in stages in workshop sessions.

End of Part 1

