Mostow Fibration

Definition 1 A connected subgroup G of $GL(n, \mathbb{R})$ is reductive if its Lie algebra \mathfrak{g} has a decomposition

$$g = k \oplus p$$

where

- (i) $[k, k] \subset k, [k, p] \subset p, [p, p] \subset k$
- (ii) the Lie group \widetilde{K} of $GL(n,\mathbb{C})$ whose Lie algebra is $\widetilde{k} = k \oplus ip$ is compact.

Example 2 (1) The group $\mathbb{R}^{>0} = \{(r) : r > 0\}$ is reductive, but the isomorphic group $\begin{pmatrix} 1 & \ln r \\ 0 & 1 \end{pmatrix}_{r>0}$ is not reductive.

- (2) The group $SO(n, \mathbb{R}) = \mathbf{k}$ is reductive with $\mathbf{p} = 0$.
- (3) The group SL(n, ℝ is reductive:
 g = k⊕p, where k is the Lie algebra of skew symmetric, p the space of symmetric matrices: here k⊕ip is the Lie algebra of skew hermitian matrices of trace 0, so it is the Lie algebra of the compact group SU(n).
- (4) The group $GL(n, \mathbb{C})$ is reductive:

We have $Lie(GL(n,\mathbb{C})) = \mathbf{k} \oplus i\mathbf{k}$, where \mathbf{k} is the Lie algebra of unitary matrices. $Embed\ M(n,\mathbb{C})\ in\ M(2n,\mathbb{R})\ by\ A + iB \mapsto \left(\begin{array}{cc} A & -B \\ B & A \end{array} \right)\ etc.$

- **Proposition 3** (i) The group G is a closed subgroup of $GL(n, \mathbb{R})$ and G = KP, where K is generated by $\exp(X) : X \in \mathsf{k}$ and $P = \exp(\mathsf{p})$.
 - (ii) There is a \widetilde{K} -invariant hermitian inner product on \mathbb{C}^n which is real-valued on \mathbb{R}^n and on orthonormal basis of \mathbb{R}^n remains an orthonormal basis of \mathbb{C}^n . (see Indag. Math. N.S. 10(4), 473–483).

The group \widetilde{K} is represented by unitary matrices, therefore k is represented by real skew-symmetric matrices and p by real symmetric matrices.

The form $B(X,Y)=\operatorname{Tr}(XY)$ is non-degenerate; it is negative definite on k and positive definite on p.

The main technical tool in Mostow [] is a generalization of the polar decomposition. For this, he uses the geometry of the symmetric space GL(n,R)/O(n,R). Put G = GL(n,R), K = O(n,R). By polar decomposition, G = KP. To G/K = P, we give the G-invariant metric as follows: Put $\xi_0 = eK$. We can identify the tangent space at ξ_0 with the vector space of all symmetric matrices: \mathbf{p} . If $v \in \mathbf{p}$, then $e^{tv} \cdot \xi$ is a curve with $d/dt|_{t=0}(e^{tv} \cdot \xi_0) = v$.

The map from $G \to P$, $g \mapsto g^t$ factorizes through K. The G-invariant action on P is therefore $g \cdot x = gxg^t$. The metric on $T_{\xi_0}(G/K) = T_e(P)$ is $\|\vec{v}\|^2 = \text{Tr}(\vec{v} \cdot \vec{v})$, which is K-invariant.

Now if $p \in P$ and $\vec{w} \in T_p(P)$, then as $p = qq^t = q^2$ for some q,

$$\begin{aligned} \|\vec{w}\|^2 &= \operatorname{Tr}(q^{-1}\vec{w}(q^{-1})^t)^2 \\ &= \operatorname{Tr}(q^{-1}\vec{w}q^{-1} \cdot q^{-1}\vec{w}q^{-1}) \\ &= \operatorname{Tr}(q^{-1}\vec{w}q^{-2}\vec{w}q^{-1}) \\ &= \operatorname{Tr}(q^{-2}\vec{w}q^{-2}\vec{w}) = \operatorname{Tr}(p^{-1}\vec{w})^2 = \|p^{-1}\vec{w}\|^2. \end{aligned}$$

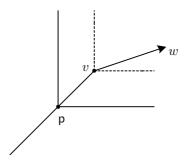
Therefore, if $\gamma(t)$ is a curve in P, then

$$\left(\frac{ds}{dt}\right)^2 = \text{Tr}[\gamma(t)^{-1}\gamma'(t)]^2.$$

Now G/K = P is a symmetric space of curvature ≤ 0 . Such spaces have the following property.

Theorem 4 If M is a complete Riemannian manifold of non-positive curvature, then for all $p \in M$, $v \in T_p(M)$ and $w \in T_v(T_p(M))$, one has the inequality

$$||d\exp_p(v)(w)|| \ge ||w||$$



(see Indag. Math. paper cited earlier)

(Mostow gives a proof from first principles).

In particular, for any curve $\{\gamma(t)\}\subseteq T_p(M)$, we have

$$\operatorname{length}(\exp_n \circ (\gamma)) \ge \operatorname{length}(\gamma).$$

Let p =the space of all symmetric matrices. $P = \exp(p)$ is the space of all positive definite matrices, with the Riemannian metric defined above. Since P is homeomorphic to p, it is a complete space of curvature ≤ 0 .

Proposition 5 For $p \in P$, $\exp(t \log p)$, $0 \le t \le 1$ is the unique geodesic in P joining the identity e to p.

Proof. Let $H = \log p$. Now, if $f(t) = e^{tH}$, then $f'(t) = He^{tH}$, so $||\dot{f}(t)||^2 = \text{Tr}(e^{-tH}He^{tH})^2 = \text{Tr}(H^2)$. So $|\dot{f}(t)| = ||H||$. Therefore

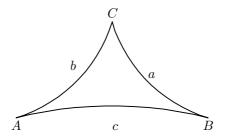
$$\int_0^1 \|\dot{f}(t)\| dt = \|t\| = {\rm dist}(H,0) = {\rm dist}(\log p, \log e) \ \ (e = \ {\rm identity \ of} \ G).$$

Since $||H|| \le \text{length of any path joining } H$ to $0 \le \text{length of any path in } P$ joining $\exp(H)$ with $\exp(0)$, we see that the path $f(t) = e^{tH}$, $0 \le t \le 1$ is the unique geodesic joining e with p (because it is a constant speed curve).

By homogeneity, this is true for any two points (this also follows at once from Cartan-Hadamard). \blacksquare

Proposition 6 The Riemannian angle between any two paths f and g intersecting at e (e = identity) is equal to the euclidean angle between the paths $\log f$ and $\log g$ intersecting at 0.

Moreover, in any geodesic triangle



we have

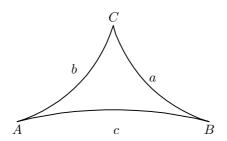
$$c^2 > a^2 + b^2 - 2ab\cos\widehat{C}.$$

Proof. By Proposition 1, the usual exponential map from p to P is the Riemannian exponential map of $T_e(P) = p$ onto P. If $f(t) = \exp(\varphi(t))$, then $f'(t) = d \exp_{\varphi(t)}(\varphi'(t))$, so if f(0) = e, then $\varphi(0) = 0$ and $f'(0) = d \exp_0(\varphi'(0)) = \varphi'(0)$. Therefore, the angle between the curves $f(t) = e^{\varphi(t)}$, $g(t) = e^{\psi(t)}$ at t = 0 is the same as the angle between $e^{tf'(0)}$ and $e^{tg'(0)}$.

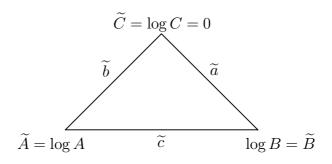
Now, $\langle f'(0), g'(0) \rangle = \text{Tr}(f'(0) \cdot g'(0)) = \text{Tr}(\varphi'(0) \cdot \psi'(0))$. So the angle of intersection between f and g at e =

angle between $\log f(t)$ and $\log q(t)$ at t=0.

Take a geodesic triangle



Since the G-action $g \cdot x = gxg^t$ $(x \in P)$ is transitive, we may suppose that C = e(identity of G). We compare this with the triangle



By Proposition 1, $\widetilde{a}=a,\ \widetilde{b}=b$ and by what was shown in Proposition 6. $\hat{C}=\hat{C}$. By the distance increasing property of the exponential map on spaces of curvature ≤ 0 , we see that $C^2 \geq (\widetilde{C})^2$. Therefore,

$$C^{2} \ge (\widetilde{C})^{2} = (\widetilde{a})^{2} + (\widetilde{b})^{2} - 2\widetilde{a}\widetilde{b}\cos\widehat{\widetilde{C}}$$
$$= a^{2} + b^{2} - 2ab\cos\widehat{C}$$

So

$$C^2 \ge a^2 + b^2 - 2ab\cos\widehat{C}$$

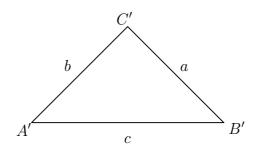
Proposition 7 The sum of angles in a geodesic triangle is $\leq 2\pi$.

Proof. By the cosine law

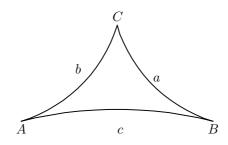
$$c^2 \ge a^2 + b^2 - 2ab\cos\widehat{C} \ge a^2 + b^2 - 2ab = (a-b)^2.$$

If $a \ge b$, then $c \ge a - b$, so $c + b \ge a$. If $a \le b$, then $c + b \ge a$. In any case $a \le b + c$.

Construct an euclidean triangle with sides a, b, c:



Compare it with



So

$$c^{2} = a^{2} + b^{2} - 2ab\cos\widehat{C}' \ge a^{2} + b^{2} - 2ab\cos\widehat{C}.$$

Hence $\cos \widehat{C}' \leq \cos \widehat{C}$, so $\widehat{C}' \geq \widehat{C}$. Similarly, $\widehat{A}' \geq \widehat{A}$, $\widehat{B}' \geq \widehat{B}$. Hence $\widehat{A}' + \widehat{B}' + \widehat{C}' \geq \widehat{A} + \widehat{B} + \widehat{C}$, i.e., $2\pi \geq \widehat{A} + \widehat{B} + \widehat{C}$.

For notational convenience, from now on $\widetilde{G} = Gl(n,R)$, $\widetilde{K} = O(n,R)$. So $\widetilde{G} = \widetilde{K}\widetilde{P}$. G is a reductive subgroup of G.

By the proposition on p. 1, we have a compatible decomposition G = KP where K is a closed subgroup of K and $P = \exp(p) \subset P$ and $[p, p] \subset k$, $[k, p] \subset p$.

Proposition 8 $\exp(p)$ is a totally geodesic subspace of $\exp(\widetilde{p})$, where \widetilde{p} is the space of all symmetric matrices.

Proof. The geodesic joining e to $\exp(X)$ $(X \in p)$ is $\{\exp(tx)\}_{0 \le t \le 1}$. For a fixed $a \in p = \exp(\mathbf{p})$, the map $f \mapsto afa$ maps P to P and it has an inverse $f \mapsto a^{-1}fa^{-1}$ so the map $f \mapsto afa$ is 1:1 and onto P.

Recalling that G operates on P by $g \cdot x = gxg^t$ and this action preserves the metric on P, we see that the geodesic $\{\exp(tX)\}_{0 \le t \le 1}$ is mapped to the geodesic $\{a \exp tXa\}_{0 \le t \le 1}$ which joins a^2 to $ae^{tX}a$. Since every element of $\exp(p)$ can be written as a^2 for some $a \in \exp(\mathbf{p})$, and $f \mapsto afa$ is surjective, we see that $\exp(\mathbf{p})$ is a totally geodesic subspace of $\exp(\widetilde{p})$.

Proposition 9 Let $F = p^{\perp}$. Then

$$\exp(\widetilde{\mathbf{p}}) = \{efe : e \in \exp(\mathbf{p}), f \in \exp(\mathbf{p}^{\perp})\}.$$

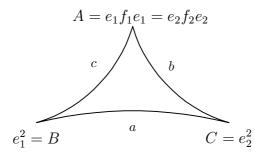
Proof. Step 1: Define

$$\varphi: E \times F \to \exp(\widetilde{\mathbf{p}})$$

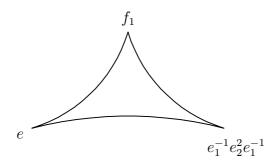
$$(E = p)$$
 by

$$\varphi(e, f) = efe.$$

Suppose $e_1 f_1 e_1 = e_2 f_2 e_2$. Consider the triangle



By the isometry $x\mapsto e_1^{-1}xe_1^{-1}$, this is mapped onto



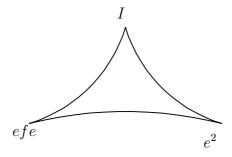
Denote by $\overline{[x,y]}$ the geodesic segment joining x and y. So, by Proposition 8, $\overline{[e,e_1^{-1}e_2^2e_1^{-1}]}$ is contained in $\exp(\mathbf{p})$ and $\overline{[e,f]}$ is contained in $\exp(\mathbf{p}^{\perp})$. Therefore, by Proposition 6, the angle at vertex $e=90^\circ$, so the angle at vertex $B=90^\circ$. Similarly, the angle at vertex $C=90^\circ$. Hence, by the cosine law,

$$b^2 > a^2 + c^2$$
, $c^2 > b^2 + a^2$.

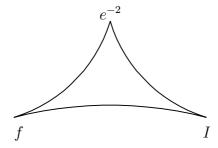
So $b^2 = c^2$ and $a^2 = 0$. Hence $e_1^2 = e_2^2$, so $e_1 = e_2$. Therefore $f_1 = f_2$. This means that φ is 1:1.

Step 2: Im φ is closed. We estimate dist. (efe, I) = d(efe, I) in terms of d(e, I) and d(f, I).

Consider the geodesic triangle



which is isometric to



Now $\widehat{I} = 90^{\circ}$, so $\widehat{e}^2 = 90^{\circ}$. So by the cosine law

$$\begin{aligned} [d(efe,I)]^2 & \geq & [d(efe,e^2)] + [d(e^2,I)]^2 \\ & = & [d(f,I)]^2 + [2d(e,I)]^2. \end{aligned}$$

So $d(efe, I) \ge \max\{d(f, I), d(e, I)\}.$

Suppose $e_n f_n e_n \to x \in \exp(\widetilde{\mathfrak{p}})$. So $d(e_n, f_n e_n, I) \to d(x, I)$. So as $d(e_n, I), d(f_n, I) \le d(e_n f_n e_n, I)$, we see that $\{e_n\}, \{f_n\}$ are bounded.

By extracting convergent subspaces, we see that $e_n f_n e_n$ converges to efe = x. Hence Im φ is closed.

Step 3: φ is an open map. Since φ is continuous and 1: 1 and $E \times F$ and P are euclidean spaces of the same dimension, φ maps open sets to open sets. As im φ is closed, we must have image $\varphi = P$. Hence $\varphi : E \times F \to P$ is a homeomorphism.

Proposition 10 Any non-singular $n \times n$ -matrix can be expressed uniquely and continuously as $k \cdot f \cdot e$ where k is orthogonal and $e \in \exp(\mathfrak{p}), f \in \exp(\mathfrak{p}^{\perp})$.

Proof. Given a non-singular matrix x, $x^t x$ is positive and symmetric so it belongs to $\exp(\tilde{p})$. Hence we can find $f \in \exp(p^{\perp})$ so that

$$x^t x = ef^2 e.$$

Note that if x=kfe, then $x^t=efk^{-1}$, so $x^tx=ef^2e$. So we set $k=xe^{-1}f^{-1}$. Then $k^t=f^{-1}e^{-1}x^t$ and

$$k^{t}k = f^{-1}e^{-1}x^{t}xe^{-1}f^{-1} = f^{-1}e^{-1}(ef^{2}e)e^{-1}f^{-1} = I.$$

Now if $x = k_1 f_1 e_1 = k_2 f_2 e_2$, then $x^t x = e_1 f_1^2 e_1 = e_2 f_2^2 e_2$, so $e_1 = e_2$, $f_1 = f_2$ and $k_1 = k_2$. Hence the map $\theta : (k, f, e) \mapsto k f e$ is 1 : 1 and onto.

In the representation x = kfe, e and f depend continuously on $x^t x$, so on x and therefore k also depends continuously on x. Therefore θ^{-1} is also continuous.

The Mostow Fibration: We have

$$\widetilde{G} = \widetilde{K}FE$$

and G = KE, where G is a reductive subgroup of \widetilde{G} . We define a map

$$\widetilde{K} \underset{K}{\times} F \to \widetilde{G}/G$$

by $\widetilde{k} \times f \mapsto \widetilde{k}fG$, which is surjective as $\widetilde{G} = \widetilde{K}FE$. Now if $\widetilde{k}fG = \widetilde{k}_1f_1G$, then $\widetilde{k}f = \widetilde{k}_1f_1ke = \widetilde{k}_1k(k^{-1}f_1k)e$.

Since K maps p onto p (i.e. $kzk^{-1} \in p$ if $z \in p$), we see that it also maps p^{\perp} to p^{\perp} . Therefore, by the uniqueness of the decomposition given in Proposition 10, we see that

$$\widetilde{k} = \widetilde{k}_1 k$$
, $f = k^{-1} f_1 k$, $e = I$.

So,

$$\widetilde{k}_1 = \widetilde{k}k^{-1}, \ f_1 = kfk^{-1}.$$

Hence the map

$$\widetilde{K} \underset{K}{\times} F \to \widetilde{G}/G$$
$$[\widetilde{k} \times f] \mapsto \widetilde{k}fG$$

is a diffeomorphism.

Remark 11 The same proof works if $\widetilde{G} \supset G$ is a reductive pair (for any \widetilde{G} , G with compatible decompositions).

In particular, this applies to $K^{\mathbb{C}}/L^{\mathbb{C}}$:

$$k^{\mathbb{C}} = k \oplus ik, \quad \ell^{\mathbb{C}} = \ell \oplus i\ell$$

So

$$K \underset{L}{\times} \exp(i\ell^{\perp}) \cong K^{\mathbb{C}}/L^{\mathbb{C}}$$

$$\downarrow$$

$$K/L$$

In this sense, the affine quadratic is real-analytically a vector bundle over the real sphere.