Mostow Fibration

Definition 1 A connected subgroup G of GL(n,R) is reductive if its Lie algebra g has
a decomposition
g=kop

where
(i) [k, k] C k,[k,p] Cp, [p,p] Ck

(ii) the Lie group K of GL(n,C) whose Lie algebra is k =k @ ip is compact.

Example 2 (1) The group R° = {(r) : r > 0} is reductive, but the isomorphic

11 . .
group ( 0 Iir 1s not reductive.
r>0

(2) The group SO(n,R) = k is reductive with p = 0.

(3) The group SL(n,R is reductive:
g = k®p, where k is the Lie algebra of skew symmetric, p the space of symmetric
matrices: here k & ip is the Lie algebra of skew hermitian matrices of trace 0, so
it is the Lie algebra of the compact group SU(n).

(4) The group GL(n,C) is reductive:

We have Lie(GL(n,C)) = k @ ik, where k is the Lie algebra of unitary matrices.

Embed M(n,C) in M(2n,R) by A+iB — ( g _i ) etc.

Proposition 3 (i) The group G is a closed subgroup of GL(n,R) and G = KP,
where K is generated by exp(X) : X € k and P = exp(p).

(ii) There is a K -invariant hermitian inner product on C" which s real-valued on R™
and on orthonormal basis of R™ remains an orthonormal basis of C". (see Indag.

Math. N.S. 10(4), 473-483).

The group K is represented by unitary matrices, therefore k is represented by real
skew-symmetric matrices and p by real symmetric matrices.

The form B(X,Y) = Tr(XY') is non-degenerate; it is negative definite on k and
positive definite on p.

The main technical tool in Mostow [ ] is a generalization of the polar decompo-
sition. For this, he uses the geometry of the symmetric space GL(n, R)/O(n, R). Put
G = GL(n,R), K = O(n,R). By polar decomposition, G = KP. To G/K = P, we
give the G-invariant metric as follows: Put {5 = e/. We can identify the tangent space
at & with the vector space of all symmetric matrices: p. If v € p, then e’ - £ is a curve

with d/dt‘t:()(@tv . fo) = 0.



The map from G — P, g — ¢' factorizes through K. The G-invariant action on P
is therefore g - © = gzg'. The metric on Ty, (G/K) = T.(P) is ||0]|* = Tx(¢ - ¥), which
is K-invariant.

Now if p € P and w € T,,(P), then as p = qq' = ¢* for some g,

[])* = Tr(g~'ai(g™")")?
= Tr(q 'dg ' q taig)
= Tr(q g *wg ")
Tr(

Therefore, if y(¢) is a curve in P, then

(%)2 = Te[y(t) "'/ (1))

Now G/K = P is a symmetric space of curvature < 0.
Such spaces have the following property.

Theorem 4 If M is a complete Riemannian manifold of non-positive curvature, then
forallpe M, veT,(M) and w € T,(T,(M)), one has the inequality

1 expy,(v) (w)]| = [Jwl]

(see Indag. Math. paper cited earlier)
(Mostow gives a proof from first principles).
In particular, for any curve {y(¢)} C T,,(M), we have

length(exp, o(7y)) > length(y).

Let p = the space of all symmetric matrices. P = exp(p) is the space of all positive
definite matrices, with the Riemannian metric defined above. Since P is homeomorphic
to p, it is a complete space of curvature < 0.

Proposition 5 Forp € P, exp(tlogp), 0 <t <1 is the unique geodesic in P joining
the identity e to p.



Proof. Let H = logp. Now, if f(t) = e, then f'(t) = He'™, so /()] =
Tr(e " He'™)? = Tr(H?). So |f(t)| = ||H||. Therefore

1
/ | f(@)]|dt = ||t|| = dist(H,0) = dist(logp,loge) (e = identity of G).
0

Since ||H|| < length of any path joining H to 0 < length of any path in P joining
exp(H) with exp(0), we see that the path f(t) = ¢!, 0 <t <1 is the unique geodesic
joining e with p (because it is a constant speed curve).

By homogeneity, this is true for any two points (this also follows at once from
Cartan-Hadamard). m

Proposition 6 The Riemannian angle between any two paths f and g intersecting
at e (e = identity) is equal to the euclidean angle between the paths log f and logg
intersecting at 0.

Moreover, in any geodesic triangle

we have R
2> a>+b* —2abcosC.

Proof. By Proposition 1, the usual exponential map from p to P is the Riemannian
exponential map of T,(P) = p onto P. If f(t) = exp(¢(t)), then f'(t) = dexp,) (' (1)),
so if f(0) = e, then ¢(0) = 0 and f'(0) = dexpy(¢'(0)) = ¢'(0). Therefore, the angle
between the curves f(t) = e?®), g(t) = e¥® at ¢t = 0 is the same as the angle between
etf'(0) and et9' ()

Now, (f'(0),¢'(0)) = Tr(f'(0)-¢'(0)) = Tr(¢£'(0)-2'(0)). So the angle of intersection
between f and g at e =

angle between log f(t)andlogg(t) at t=0.



Take a geodesic triangle

A c B

Since the G-action g -z = gxg' (x € P) is transitive, we may suppose that C' = e
(identity of GG). We compare this with the triangle

C=logC=0

A=logA c logB:E

By Proposition 1, a = a, b=band by what was shown in Proposition 6. C=cC.
By the distance increasing property of the exponential map on spaces of curvature
< 0, we see that C? > (C)?. Therefore,

C? > (C)? = (@)% + (b)* —2abcosC
= >+ - 2abcos C

So

C? > a2+ 12 — 9abcos C'|.

]
Proposition 7 The sum of angles in a geodesic triangle is < 27.
Proof. By the cosine law

P> a’+ b — 2abcosC > a® + b2 — 2ab = (a — b)>.

Ifa>b,thenc>a—b,soc+b>a. Ifa<b, then c+b> a. In any case a < b+ c.



Construct an euclidean triangle with sides a, b, c:

C/
b a
/ /
A B B
Compare it with
C
b
a
A c B

So
A =a2+b%—2abcosC’ > a®+ b2 — 2abcos C.

Hencecosa'SAcosQ,s/(\)a’ia. o o
Similarly, A > A, B"> B. Hence A+ B'+C'" > A+ B+ C,ie., 2r > A+ B+C.
|
For notational convenience, from now on G = Gi(n, R), K = O(n,R). So G = KP.
G is a reductive subgroup of G.
By the proposition on p. 1, we have a compatible decomposition G = K P where K
is a closed subgroup of K and P = exp(p) C P and [p,p] C k, [k,p] C p.

Proposition 8 exp(p) is a totally geodesic subspace of exp(p), where p is the space of
all symmetric matrices.

Proof. The geodesic joining e to exp(X) (X € p) is {exp(tx)}o<i<i- For a fixed
a € p=exp(p), the map f +— afa maps P to P and it has an inverse f +— a~!fa™! so
the map f+— afais1:1 and onto P.

Recalling that G operates on P by g-x = gzg' and this action preserves the metric on
P, we see that the geodesic {exp(t.X)}o<t<1 is mapped to the geodesic {a exp tXa}o<i<i
which joins a? to ae'*a. Since every element of exp(p) can be written as a® for some
a € exp(p), and f +— afa is surjective, we see that exp(p) is a totally geodesic subspace

of exp(p). =



Proposition 9 Let F = pt. Then

exp(p) = {efe: e € exp(p), f € exp(ph)}.

Proof. Step 1: Define
p: ExF — exp(p)

(E =p) by
ole, f) =efe.

Suppose e fie; = esfaes. Consider the triangle

A= €1f1€1 = €2f2€2

el =B C=é;
By the isometry x — e; 'ze; ", this is mapped onto

S

erezer!
Denote by [, y] the geodesic segment joining x and 3. So, by Proposition 8, [e, e; 'e3e; ']
is contained in exp(p) and [e, f] is contained in exp(pt). Therefore, by Proposition 6,
the angle at vertex e = 90°, so the angle at vertex B = 90°. Similarly, the angle at
vertex C' = 90°. Hence, by the cosine law,

V¥ >a?+ 32, 2> +dk
2

So b? = ¢? and a* = 0. Hence €7 = €3, so e; = e5. Therefore f; = fo. This means that
pisl:1. m

Step 2: Im ¢ is closed. We estimate dist. (efe,I) = d(efe, I) in terms of d(e, I) and
d(f, ).

Consider the geodesic triangle




which is isometric to

~

f

Now [ = 90°, so €2 = 90°. So by the cosine law

ld(efe, D)]* = ld(efe,e®)] + [d(e*, I)]?
= [d(f, D] + [2d(e, I)]*.

So d(efe,I) > max{d(f,I),d(e,I)}.

Suppose e, fren, — = € exp(p). So d(en, fnen, 1) — d(x,I). Soasd(e,, I),d(fn, 1) <
d(ey frnen, I), we see that {e,}, {f.} are bounded.

By extracting convergent subspaces, we see that e, f,e, converges to efe = .
Hence Im ¢ is closed.

Step 3: ¢ is an open map. Since ¢ is continuous and 1 : 1 and E x F and P are
euclidean spaces of the same dimension, ¢ maps open sets to open sets. As im ¢ is
closed, we must have image ¢ = P. Hence ¢ : £ x F' — P is a homeomorphism.

Proposition 10 Any non-singular n X n-matriz can be expressed uniquely and con-
tinuously as k - f - e where k is orthogonal and e € exp(p), f € exp(pt).

Proof. Given a non-singular matrix z, z'z is positive and symmetric so it belongs to
exp(p). Hence we can find f € exp(pt) so that

'z = ef’e.

Note that if x = kfe, then 2t = efk™!, so z'z = ef?e. So we set k = we~! f~1. Then
kt = f~le7lat and

Kk =fletalze f7! = f’lefl(efze)eflf’1 =1
7



Now if x = kifie1 = kofoeo, then xlx = e fle; = exfies, 50 €1 = ey, f1 = fo and
k1 = ko. Hence the map 0 : (k, f,e) — kfe is 1: 1 and onto.

In the representation x = kfe, e and f depend continously on z'z, so on = and
therefore k also depends continously on x. Therefore §~! is also continuous. =

The Mostow Fibration: We have
G =KFE
and G = KFE, where G is a reductive subgroup of G. We define a map
KxF— é/G
K

by k X f = ,l;iG, which is surjective as G = KFE. Now if ZfG = ElflG, then
]{]f = klflke = klk(k_lflk)e.

Since K maps p onto p (i.e. kzk™! € pif z € p), we see that it also maps p* to p*.
Therefore, by the uniqueness of the decomposition given in Proposition 10, we see that

k="lkk, f=k"'fik e=1I.
So, L
ki =kk™', fi = kfk™"
Hence the map _ N
K xF—G/G
~K ~
[k x fl— kfG

is a diffeomorphism.

Remark 11 The same proof works if G O G is a reductive pair (for any é, G with
compatible decompositions).
In particular, this applies to K€/LC:

KC=kaik, (C=tqil

S0
K x exp(ift) = K€/L®
L
!
K/L

In this sense, the affine quadratic is real-analytically a vector bundle over the real
sphere.



