1 Section 7.3 Vectors

Scalar quantities have a magnitude (numerical and unit description only like area, distance and speed. Vector quantities have a magnitude and a direction like force and velocity

A **vector** is a directed line segment. The length of the line segment is the magnitude of the vector, and the direction of the vector is measured by an angle.

The point A is called the initial point (or tail) of the vector and the point B is called the terminal point (or head) of the vector. The vector is denoted by \overrightarrow{AB} and the magnitude is denoted by ||AB||.

Equivalent vectors have the same magnitude and the same direction.

Multiplying a vector by a positive real number (other than 1) changes the magnitude of the vector but not its direction. Multiplying a vector by a negative real number a reverses the direction of the vector and multiplies the magnitude of the vector by |a|.

Vectors can be added graphically by using the **parallelogram method** or the **triangle method**.

In the triangle method, the tail of the vector U is placed at the head of the other vector V. In the parallelogram method, the tails of the two vectors U and V are placed together.

Vectors in a coordinate Plane

A vector can be moved in the plane as long as the magnitude and the direction are not changed. If $P_1(x_1, y_1)$ is the initial point of a vector and $P_2(x_2, y_2)$ is the terminal point, then an equivalent vector OP has its initial point at the origin and its terminal point at P(a, b) where $a = x_2 - x_1$ and $b = y_2 - x_1$. The vector can be denoted by $v = \langle a, b \rangle$; a and b are called the components of the vector.

Example 1 Find the components of a vector CD whose tail is the point C(2,5) and whose head is the point D(3,-1). Determine a vector w that is equivalent to CD and has its initial point at the origin.

The **magnitude** of the vector $v = \langle a, b \rangle$ is $||V|| = \sqrt{a^2 + b^2}$. The **direction angle** is the angle between the vector and the positive x-axis and we can find it by $\tan \alpha = \frac{b}{a}$.

Fundamental Vector Operations

If $v = \langle a, b \rangle$ and $w = \langle c, d \rangle$ are two vectors and k is a real number, then

1.
$$||v|| = \sqrt{a^2 + b^2}$$

2.
$$v + w = \langle a, b \rangle + \langle c, d \rangle = \langle a + c, b + d \rangle$$

3.
$$kv = k\langle a, b \rangle = \langle ka, kb \rangle$$

Example 2 Given
$$v = \langle 12, -5 \rangle$$
 and $w = \langle 2, 7 \rangle$, find $1)||v||$ $2)v + w$ $3) - 5v$ $4)||3v - 4w||$

A unit vector is a vector whose magnitude is 1.

Example 3 Which of the following is a unit vector? $1)v = \langle 1, 1 \rangle$ $2)v = \langle 0, 1 \rangle$ $3)v = \langle \frac{3}{5}, \frac{4}{5} \rangle$

A unit vector in the direction of a vector v is $\frac{v}{||v||}$.

Example 4 Find a unit vector u in the direction of $v = \langle 2, -9 \rangle$.

Definition of Unit Vectors i and j

$$i = \langle 1, 0 \rangle$$
 $j = \langle 0, 1 \rangle$

If v is a vector and $v = \langle a_1, a_2 \rangle$, then $v = a_1 i + a_2 j$.

Example 5 If $v = \langle 3, 4 \rangle$, represent v in terms of the unit vectors i and j.

Example 6 Given v = 4i + 3j and w = 6i - 3j, find 4v + 5w.

Horizontal and Vertical Components of a Vector

Let $v = \langle a_1, a_2 \rangle$, where $v \neq 0$, the zero vector. Then $a_1 = ||v|| \cos \theta$ and $a_2 = ||v|| \sin \theta$ where θ is the angle between the positive x-axis and v.

The Horizontal component of v is $||v||\cos\theta$. The Vertical component of v is $||v||\sin\theta$.

Example 7 Is $u = \cos \theta i + \sin \theta j$ a unit vector?

Example 8 Find the horizontal and vertical components of a vector v of magnitude 10 meters with direction angle 225°. Write the vector in the form $v = a_1i + a_2j$.

Definition of Dot Product

Given $v = \langle a, b \rangle$ and $w = \langle c, d \rangle$, the dot product of v and w is given by $v \cdot w = ac + bd$.

Example 9 Find the dot product of $v = \langle 6, -2 \rangle$ and $w = \langle -2, 4 \rangle$.

In the following properties, u, v, and w are vectors and a is a scalar.

$$1)v \cdot w = w \cdot v \qquad 2)u \cdot (v+w) = u \cdot v + u \cdot w \qquad 3)a(u.v) = (au) \cdot v = u \cdot (av)$$

$$4)v \cdot v = ||v||^2 \qquad 5)0 \cdot v = 0 \qquad 6)i \cdot i = j \cdot j = 1 \qquad 7)i \cdot j = j \cdot i = 0$$

Magnitude of a Vector in terms of the Dot Product

If
$$v = \langle a, b \rangle$$
, then $||v|| = \sqrt{v \cdot v}$

Alternative Formula for the Dot Product

If v and w are two nonzero vectors and α is the smallest non-negative angle between v and w, then $v \cdot w = ||v||||w|| \cos \alpha$.

Angle between Two Vectors

If v and w are two nonzero vectors and α is the smallest non-negative angle between v and w, then $\cos \alpha = \frac{v \cdot w}{||v||||w||}$ and $\alpha = \cos^{-1} \left(\frac{v \cdot w}{||v||||w||} \right)$.

Example 10 Find the measure of the smallest positive angle between the vectors v = 3i + 2j and w = -2i - j.

Parallel and Perpendicular Vectors

Two vectors are **parallel** when the angle α between the vectors is 0° or 180°. Two nonzero vectors v and w are **orthogonal** (**perpendicular**) if and only if $v \cdot w = 0$.

Scalar Projection

If v and w are two nonzero vectors and α is the smallest non-negative angle between v and w, then the scalar projection of v on w, $\operatorname{proj}_w v$, is given by $\operatorname{proj}_w v = ||v|| \cos \alpha$.

Example 11 Given v = 3i - 4j and w = i + 3j, find $proj_w v$.

Example 12 Find a vector that has the initial point (3,-1) and is equivalent to v = 2i - 3j.

Example 13 Let w = 4i + j. Find a vector perpendicular to w.