1 Section 6.1 Verification of Trigonometric Identities

The **domain** of an equation consists of all values of the variable for which every term is defiend.

Example 1 Find the domain of $\frac{\sin x \cos x}{\sin x} = \cos x$.

An **identity** is an equation that is true for all its domain values. Guidelines of Verifying Trigonometric Identities

- 1. Begin with the more complex side.
- 2. Perform indicated operations
- 3. Make use of previously established identities
- 4. Rewrite one side in terms of only sines and/or cosines.
- 5. Rewrite one side in terms of a single trigonometric function.
- 6. Multiply both the numerator and the denominator of a function by the same factor.
- 7. Keep your goal in your mind.

Example 2 Determine whether each equation is an identity: $1)1 + \tan^2 x = (1 + \tan x)^2$ $2)2\cos^2 x + 1 = 3\cos^2 x + \sin^2 x$.

Example 3 Verify the following Identities:

1.
$$(1 + \tan x)^2 = 2 \tan x + \sec^2 x$$

2.
$$\tan^2 x = \sin^2 x \tan^2 x + \sin^2 x$$

$$3. \frac{\sec x + 1}{\tan x} = \frac{\tan x}{\sec x - 1}$$

4.
$$\frac{\tan^2 x}{\cot^2 x + 1} = \frac{\sec^2 x - 1}{\csc^2 x}$$

$$5. \ \frac{1-\tan x + \sec x}{1+\tan x - \sec x} = \frac{1+\sec x}{\tan x}$$

6.
$$\frac{1-\tan^4 x}{\sec^2 x} = 1 - \tan^2 x$$

7.
$$\frac{2\sin x \cot x + \sin x - 4\cot x - 2}{2\cot x + 1} = \sin x - 2$$

8.
$$\sqrt{\frac{1+\sin x}{1-\sin x}} = \frac{1+\sin x}{\cos x}, \quad \cos x > 0.$$

Example 4 Express $\tan x$ in terms of $\cos x$.