KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

Department of Mathematical Sciences

Mail 501 Method of Applied Mathemat	Math 301	Method of Applied Mathematics
-------------------------------------	----------	-------------------------------

Major Exam # 1

Term 061

Time Allowed 60 minutes

 Name
 ID #
 Section #

Q #	Grade
1	/ 5
2	/ 4
3	/ 5
4	/ 6
Total	/ 20

Important Note

Show all work. Use of programmable calculator is not allowed. Mobiles and paging devices should not be carried during examination.

Instructor: F. D. Zaman

Q # 1(a) Let <u>**r**</u> be the position vector and <u>**a**</u> a constant vector. Show the following $\nabla \bullet [(\underline{r} \bullet \underline{r})\underline{a}] = 2(\underline{r} \bullet \underline{a}).$ (2)

Q1(b) Evaluate the integral $\int_{C} 2xydx - 4ydy + e^{xy}dz \text{ where C is the curve } x = 2t, y = \sqrt{t}, z = 4, t = 0, 1.$

(3)

Q2) Show that the integral is independent of path and hence evaluate it along any path ${}^{(3,4)} v dx - (x + y^3) dy$

(4)
$$\int_{(2,1)}^{(3,4)} \frac{ydx - (x + y^{2})dy}{y^{2}}.$$

Q 3) Use Green's theorem to evaluate the given line integral along the curve in the first quadrant formed by graphs of $y = 0, x = y^2, x = 8 - y^2$ (5)

$$\oint_{c} \frac{x^{3} + y^{3}}{3} dx + (xy + xy^{2}) dy.$$

Q4) Find the integral giving flux of the vector field $\underline{\mathbf{F}} = z \underline{\mathbf{k}}$ through the surface S formed by the portion of the paraboloid $z = 5 - x^2 - y^2$ inside the cylinder $x^2 + y^2 = 4$. (6)