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Abstract

The diffraction of SH-waves in an infinite elastic plate is studied under
general boundary conditions using the Wiener-Hopf technique A mixed
interface boundary value problem is solved as an illustartion.

1 INTRODUCTION

The problem of propagation of elastic waves in an elastic plate under a vari-
ety of boundary conditions has been studied extensively by many authors ( see
Achenbach [1] for details). One of the interesting problems in material sciences
and non-destructive testing is that of determination of the diffracted field in
the presence of inhomogeneities and discontinuities inherent in the elastic plate.
Whenever the diffracting object can be modelled as a plane, the method pro-
posed by Wiener and Hopf [9] to solve singular integral equations has been used
by a number of authors. de Hoop [3] carried out an elegant and extensive study
of the diffraction of plane waves in an infinite medium with a semi-infinite plane
inclusion using the Wiener-Hopf method in the integral equation formulation.
In this method the boundary value problem is reduced to an integral equation
and then converted into the functional equation of the Wiener-Hopf type. Jones
[4] presented a modification to this procedure by reducing the boundary value
problem directly to the Wiener-Hopf equation without first having to derive an
integral equation formulation. Since then a number of authors have applied
this technique to obtain solution of a number of diffraction problems. Among
them Kazi [5] Sinha [8], Asghar and Zaman [2] and Zaman et. al. [10,11] ap-
plied this to the diffraction problems arising from incident SH-waves on a plane
discontinuity in an elastic medium.

The diffraction problems solved in the above cases involved either the dis-
placement field (Neumann boundary conditions) or it's derivative (Dirichlet
boundary conditions) to be specified on a half plane. In both the cases, the
resulting Wiener-Hopf equation is solved to obtain the diffracted field. We use
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the general mixed boundary condition to be satisfied on a surface of an infinite
elastic plate of uniform thickness. The lower surface of the plate is assumed
to be free. The field in the plate is calculated using the Jones modification of
the Wiener-Hopf technique. The problem of either displacement or the stress
specified at a diffracting half plane can be derived as special cases from our case.
An example of practical interest is presented to demonstrate usefulness of our
model.

2 FORMULATION OF THE PROBLEM

Let us consider an infinite elastic plate of uniform thickness 2. The axes are
chosen such that the lower surface of the plate coincides with the plane y = 0.
An SH-wave is assumed to be propagating in the positive direction of x-axis.
The equation of motion is

Bu Pw_ 1w "
8x2 3y2 - ﬁ2 o2’

where 8=,/ % is the velocity of the shear wave, p, p being the rigidity and

density respectively of the medium. The zero initial conditions are assumed
without any loss of generality. The boundary conditions are as follows.

1. On the lower surface of the plate the free surface boundary conditions are
satisfied, ie.,

?E=0 ony=0, —oo<z<o0. 2)

By

2. The upper surface of the plate satisfies mixed boundary conditions.

(a)

w(z, h,t) = f(z,hyt), —o0<z<0, (3)
(b)
iay—%lﬁ=g(z,h,t), 0<r<oo. 4)

3. The radiation condition at infinity is assumed to ensure the uniqueness of
the solution. (Noble [6]).

In addition, the functions f(z,y,t) and g(=, y, t) satisfy the conditions f(z,y,t) =
O(e”?) and g{x,y,t) = O(e®) for large t for some constants p,q. Also, f(z,y,t)
and g(z,y,t) are assumed to be of exponential order in z as x — oo or z — —o0
respectively for some real constants A, B, 7; and 73.
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w= f(x.ht) h
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Figure 1: Geometery of the problem
3 WIENER-HOPF EQUATION
Let us define the Laplace transform in ¢ as
£ {w(®)} = W(s) = L ~ wit)e"d, )

where s is a complex parameter such that p,¢ < Re(s). The Fourier transform
in z is defined as

1 00
Flo@) =) =3 [ e, ®)
where a = o + it. The half range Fourier transforms are defined as
1 00
wi@ =5 [ fa)eerds @
and
1 0
w? (a) = r /_oo F(z)er**dz, (8)
so that
w{e) = wi{a) +wl(a). ©)

If lw(z)] < Ae™” as z — —o0, w*(a) defines an analytic function of o if
Im(e) = 7 < 71. Similarly, if |w(z)] < Be™® as * — oo,w}(a) is analytic
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if 7 > 9. Thus w*(a) defines an analytic function of o in the common strip
71 <Im(e) =7 < T2

We now take the Laplace transform in ¢ and the Fourier transform in x of
the equation (1) to obtain

E2W*(z,q,s)

dy2 - IYZW*(:E) a, ‘9) = 07 (10)

where v = a? + %21' The transformed boundary conditions can be written as

d Ed

—__ZI; =0; y=0,-00<z<00. (11)
W(a,h,8)=FX(a,h,8); y=h,—co<z<0. (12)
W;/(a,h,s) =Gie,h,s); y=h0<z<o0. (13)

For brevity sake we shall suppress the dependence on some or all of a, y, s and
will write these only when needed. The solution to equation (11)can be written
as
W (a,y) =Cie™ + Coe™ ", 0<y<h (14)
Using the boundary conditions (12), we get
W*(a, ) = (e s) coshry, (15)
where Cy = C2 = A(w,s). Using the decomposition formula (10), we obtain
from (13)
Wila, h) + Wi(a,h) = A(a, s) coshyh, (16)
W (o, h) + W (@, B} = —yA(, s) sinhvh. 17
We eliminate A(«, s) from equations (16) and (17) using the boundary condi-

tions (13) and (14) to get the Wiener-Hopf equation

G(ayh) — W (@, h) = —ytanh yh {W(a, h) + F*(, )} (18)
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4 SOLUTION OF THE WIENER-HOPF EQUA-

'TION

Sato [7] has given the factorization of ﬂ,;"—"- and cosh-yh in the one sided func-
tions which are analytic either in the upper or lower half-plane. Without going
into details, we give Sato’s results in Appendix I and use these to obtain fac-
torization

~tanh yh = ifgz; (19)

where Pi(a) are given by equation (A7) in the appendix I. The Wiener-Hopf
equation can thus be written as
P_ ()G (@) — P_(a)W™/ (o, h) = Pr{a)W? (@, h) + Pr()F"(@).  (20)
We split the mixed terms still present in equation (20) into the sum of one sided
functions using the general decomposition theorem given by Noble [6] as
M(a) = Py(a)F* (@) — P_(a)G7 (o) = My (0) + M_(a). (21)

The expressions for M., (a) and M_(a) are given as

tc+o00
1 M)
| ook (22)

2c—

Mzfa) ==
The equation (20) can thus be written as

M_(a) - P_(a)WZ/(a,h) = Py (0)Wi (0, h) — My (a). (23)

The left side of equation (23) is analytic in the lower half-plane 7 < T2 while
the right side is analytic in the upper half-plane 7 > 7. Both sides are equal in
the strip Ty < 7 < 72 and thus define an entire function. By Liouville’s thecrem
and appropriate asymptotic behaviour (Noble[6]), this entire function can be
shown to be zero. Thus

W (o, b, s) = ﬁ}f'((s)) (24)
and
W (b, s) = M() (25)

Pi(a)’
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We note that Py ()} are given through equation (A7) in terms of the trans-
formed boundary data F*{a, s} and G («, s) while M1 () are give by equation
(22) in terms of known functions. The equations (24) and (25) can be used in
conjunction with (13), (14) and (15) to determine the displacement field in the
transformed plane. The inverse Laplace transform and the Fourier inversion
formula can then be used to obtain the displacement w(z,y,t). In the following
section, we exhibit it in a case of practical interest.

4.1 FREE-RIGID BOUNDARY

‘We consider the case in which semi-infinite half plane which forms the right half
of the upper surface of the plate is stress free while the semi-infinite half-plane
forming the rest of the upper surface of the plate is assumed to be rigid. A time
harmonic SH wave is travelling in the negative direction of the x-axis so that
the displacement field is given by

w(z,y) = Ccoshq(y — h)e™***, (26)

where C is a constant, ¢ = -‘;—37;- — k2, @ is angular frequency, 3 is shear velocity

and k is the wave number, The time dependence factor e*®! is omitted for
brevity. At y = h, > 0, the boundary condition is given by

Bw(z, h)
5

The total displacement vanishes at the rigid boundary z < 0 imposing the
condition

g9(z) =0, O<z<oo. 27)

w(z, k) = f(z) = —Ce™™*;, -0<z <0, (28)
In this case we have
@) = %
Fle) = mm
Gia) = 0 (29)

The Wiener-Hopf equation (21) in this case becomes

P+(a)C
(e — k)

—P_(a)w” (a,h) = Py(a)w}(a,h) - (30)

It follows that the displacement in the transformed domain can be written as

CP. (k)
a — k)P_(a)ysinh~vh

w*(a,y) = 0 coshvy. (31)
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Thus, taking inverse Fourier transform we get

_ —_1 b AP+(k) cosh vy _—taz
w(z,y) = 27 ). (o —F)P_(a)ysinb7A° dax. (32)

Notice that the pole & = k gives rise to a wave that exactly cancels with the
incident wave as should be expected. Other poles are given by sinvh = 0, giving
v = T This gives a? — ﬂ;;i'-z— = —p2 (say). Enclosing the contour in the upper
half plane, the contributions of the poles o = ip,, give the displacement field

ot AP, (k) cosh =y
= erne,
w(z,y) ,; (P — k) P_(ipn) & [sinhyA],___ 33)

This gives the transmitted field in the left part of the plate. A similar
analysis can be carried out if a wave is incident on the part of the plate with
free-free boundary from the part of the plate with free-rigid boundary.
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6 APPENDIX I

1. Sato [6] has described the factorization of 5‘—:—"17& by writing it as

sinvh
Yh

o
= H {q,zlhﬂ + a2hi} = H(a), (A1)
n=l
where v = (o? + %;-). Qnftn =(1— %;'h?t)l/zv b = .TI’.I—‘Vr
So that H{a) = Hy(a)H_{a),

where
Hi(a) = H(thn Fiah,) exp {Fick, + x{a)}, (42)
n=1
x(e) = —(ich/w) {1 -~ C —log a_h} + g_h,
o 2
C being the Euler constant. Thus
sin yh
o H(a)H (o). (43)

2. The infinite product representation of cosh vyh is
b dy2h? v - =2
_ I AL 2 2
coshvh = n|=|1 {1 + @ =122 } ,,I=I1 {q,,h,. +a hn} (Aq)

- _ _2
where b, = THT{']—N, gnhn =(1- %;-hn)l/z So that we can write

coshyh = Ly (o)L (o), (4s)
where
Li(a) = [[ (@nhn F 2ah,) exp {:anﬁn + X(a)} . (Ag)
3. We can now write the function
2 inh vh

ytanhyh = (042 + %)h%

s s H(@)H-(a)

= (a+ 15)(0: - 1-6-)h T (@) L_()

_ (e+ig)H (@) L_(a)H_(a)

L@ (a-13)
Py(a)

= P () (A7)




