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Krylov subspace methods

Given A ∈ Rn×n, v ∈ Rn. Define the jth Krylov subspace

Kj(A, v) ≡ span(v,Av, . . . ,Aj−1
v) .
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Krylov subspace methods

Given A ∈ Rn×n, v ∈ Rn. Define the jth Krylov subspace

Kj(A, v) ≡ span(v,Av, . . . ,Aj−1
v) .

Krylov subspace methods:

Iterative methods for solving large and sparse linear systems
or eigenvalue problems,

they are based on projection onto the Krylov subspaces,

examples: Lanczos, CG, Arnoldi, GMRES, BiCG.
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Krylov subspace methods
Basis

Each method must generate a basis of Kj(A, v), j = 1, 2, . . .

The trivial choice v,Av, . . . ,Aj−1v is computationally
infeasible (recall the Power Method).
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Krylov subspace methods
Basis

Each method must generate a basis of Kj(A, v), j = 1, 2, . . .

The trivial choice v,Av, . . . ,Aj−1v is computationally
infeasible (recall the Power Method).

For numerical stability: Well conditioned basis.

For computational efficiency: Short recurrence.

Best of both worlds:
Orthogonal basis computed by short recurrence.
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Optimal Krylov subspace methods
with short recurrences

CG (1952), MINRES, SYMMLQ (1975)

based on three-term recurrences

rj+1 = γjArj − αjrj − βjrj−1 ,
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Optimal Krylov subspace methods
with short recurrences

CG (1952), MINRES, SYMMLQ (1975)

based on three-term recurrences

rj+1 = γjArj − αjrj − βjrj−1 ,

generate orthogonal (or A-orthogonal) Krylov subspace basis,

optimal in the sense that they minimize some error norm:

‖x− xj‖A in CG,

‖x− xj‖ATA = ‖rj‖ in MINRES,

‖x− xj‖ in SYMMLQ -here xj ∈ x0 + AKj(A, r0).
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Optimal Krylov subspace methods
with short recurrences

CG (1952), MINRES, SYMMLQ (1975)

based on three-term recurrences

rj+1 = γjArj − αjrj − βjrj−1 ,

generate orthogonal (or A-orthogonal) Krylov subspace basis,

optimal in the sense that they minimize some error norm:

‖x− xj‖A in CG,

‖x− xj‖ATA = ‖rj‖ in MINRES,

‖x− xj‖ in SYMMLQ -here xj ∈ x0 + AKj(A, r0).

An important assumption on A:
A is symmetric (MINRES, SYMMLQ) & pos. definite (CG).
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Gene Golub

G. H. Golub, 1932–2007

By the end of the 1970s it was
unknown if such methods
existed also for general
unsymmetric A.

Gatlinburg VIII (now
Householder VIII) held in
Oxford from July 5 to 11, 1981.

“A prize of $500 has been
offered by Gene Golub for the
construction of a 3-term
conjugate gradient like descent
method for non-symmetric real
matrices or a proof that there
can be no such method”.
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