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Krylov subspace methods:

@ lterative methods for solving large and sparse linear systems
or eigenvalue problems,

@ they are based on projection onto the Krylov subspaces,

@ examples: Lanczos, CG, Arnoldi, GMRES, BiCG.
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Krylov subspace methods

Basis

Each method must generate a basis of ;j(A,v), j=1,2,...

@ The trivial choice v, Awv, ..., AJ~1y is computationally
infeasible (recall the Power Method).

@ For numerical stability: Well conditioned basis.
@ For computational efficiency: Short recurrence.

@ Best of both worlds:
Orthogonal basis computed by short recurrence.
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Optimal Krylov subspace methods

with short recurrences

CG (1952), MINRES, SYMMLQ (1975)

@ based on three-term recurrences
it = AT — oy = Birj-1,
@ generate orthogonal (or A-orthogonal) Krylov subspace basis,

@ optimal in the sense that they minimize some error norm:
|z — x;]|a in CG,
|z — 2j]|ara = |||l in MINRES,
|z — ;|| in SYMMLQ -here z; € zg + AK;(A,19).

@ An important assumption on A:
A is symmetric (MINRES, SYMMLQ) & pos. definite (CG).



Gene Golub

@ By the end of the 1970s it was
V= ; unknown if such methods
existed also for general
unsymmetric A.

o Gatlinburg VIII (now
Householder VIII) held in
Oxford from July 5 to 11, 1981.

@ “A prize of $500 has been
offered by Gene Golub for the
construction of a 3-term
conjugate gradient like descent
method for non-symmetric real

G. H. Golub, 192_2007 matrices or a proof that there
can be no such method".
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