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Abstract. In this paper, the alternating group explicit (AGE) iterative method is applied to a nonlinear 4th order
PDE describing the flow of an incompressible fluid. This equation is of a Ladyzhenskaya-type. The AGE method is
shown to be extremely powerful and flexible and affords its users many advantages. Computational results are obtained
to demonstrate the applicability of the method on some problems with known solutions. This paper demonstrates
that the (AGE) method can be implemented to approximate efficiently solutions to the Navier-Stokes equations and
the Ladyzhenskaya equations. Problem with a known solution are considered to test the method and to compare the
computed results with the exact values. Streamfunction contours and some plots are displayed showing the main features
of the solution.
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1. INTRODUCTION. The (AGE) method is an iterative method which employs the frac-
tional splitting strategy which is applied alternately at each intermediate step on tridiagonal system
of difference schemes. Its rate of convergence is governed by the acceleration parameter r. The (AGE)
iterative method is applied to a variety of problems involving parabolic and hyperbolic partial differ-
ential equations (see [4, 7, 5, 6]). In [14], Sahimi and Evans reformulated the (AGE) method to solve
the Navier-Stokes equations in the streamfunction-vorticity form.

In [10, 12, 11], a model for the motion of ideal incompressible viscous flow has been proposed by
Ladyzhenskaya. Further studies are made in [2, 3, 1, 9, 13]. In this paper we study computational
aspects of a model for stationary flows of a Ladyzhenskaya-type. The studied model is written in
terms of the streamfunction ψ and the vorticity ω. The model we work with is as follows:

Consider the following coupled system of partial differential equations in the dependent variable
ψ and ω:

4ψ = −ω, (1.1)

4(Ã(ψ)ω) + Re(
∂ψ

∂x

∂ω

∂y
− ∂ψ

∂y

∂ω

∂x
) = −g, (1.2)

where x and y are independent variables with a set of a boundary conditions prescribed on a square
region of the xy-plane. Here 4 is the usual Laplacian operator defined by,

4ψ =
∂2ψ

∂x2
+

∂2ψ

∂y2
,

where in (1.2) Ã(ψ) is defined by

Ã(ψ) = 1 + Re ε1 | −→4ψ |q−2,

with Re, ε1 and q − 2 > 0 and
−→4ψ =

−−→
grad (

−−→
grad ψ ) = [ψxx, ψxy, ψyx, ψyy]T ,

and

| −→4ψ |= (ψ2
xx + 2ψ2

xy + ψ2
yy)

1
2 .
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Note that if Re = 0, then equations (1.1) and (1.2) define a biharmonic equation given by,

42ψ =
∂4ψ

∂x4
+ 2

∂4ψ

∂x2∂y2
+

∂4ψ

∂y4
= −g.

If Re 6= 0 and ε1 = 0, then equations (1.1) and (1.2) become the Navier-Stokes equations which
describe the basic two dimensional, steady-state, viscous, incompressible flow problem. Here ψ and ω
are known respectively as the stream and vorticity functions.

2. FINITE DIFFERENCE DISCRETISATION. Let Ω be a square region of the solution
domain defined by,

Ω = {(x, y) : 0 ≤ x ≤ L, 0 ≤ y ≤ L}. (2.1)

A uniformly spaced network whose mesh points are xi = ih, yj = jh, with h = L/(m + 1) for
i, j = 0, 1, · · · ,m, m + 1 is now superimposed on Ω.

It is observed that if ω is known, then (1.1) is a linear elliptic equation in ψ, while if ψ is known,
then (1.2) is a linear elliptic equation in ω. Using central difference approximations, equations (1.1)
and (1.2) can now be descritised at the grid point (xi, yj) by the following finite difference equations,

−ψ
(k+1)
i−1,j − ψ

(k+1)
i,j−1 − ψ

(k+1)
i,j+1 − ψ

(k+1)
i+1,j + 4ψ

(k+1)
i,j = h2ω

(k)
i,j , (2.2)

−[Ã(k+1)
i−1,j − α(ψ(k+1)

i,j−1 − ψ
(k+1)
i,j+1 )]ω(k+1)

i−1,j − [Ã(k+1)
i,j−1 + α(ψ(k+1)

i−1,j − ψ
(k+1)
i+1,j )]ω(k+1)

i,j−1

−[Ã(k+1)
i,j+1 − α(ψ(k+1)

i−1,j − ψ
(k+1)
i+1,j )]ω(k+1)

i,j+1 − [Ã(k+1)
i+1,j + α(ψ(k+1)

i,j−1 − ψ
(k+1)
i,j+1 )]ω(k+1)

i+1,j

+4Ã(k+1)
i,j ω

(k+1)
i,j = h2gi,j , (2.3)

where α = Re/4 and

Ã
(k+1)
i,j = 1 + Re ε1 | −→4ψ

(k+1)
i,j |q−2 and i, j = 1, 2, · · · , m , (2.4)

and

| −→4ψ
(k+1)
i,j |=

[ (
[ψxx](k+1)

ij

)2

+ 2
(

[ψxy](k+1)
ij

)2

+
(

[ψyy](k+1)
ij

)2
] 1

2

,

and

[ψxx](k+1)
ij =

1
h2

[ψ(k+1)
i+1,j − 2ψ

(k+1)
i,j + ψ

(k+1)
i−1,j ]

[ψxy](k+1)
ij =

1
4h2

[ψ(k+1)
i+1,j+1 − ψ

(k+1)
i−1,j+1 − ψ

(k+1)
i+1,j−1 + ψ

(k+1)
i−1,j−1]

[ψyy](k+1)
ij =

1
h2

[ψ(k+1)
i,j+1 − 2ψ

(k+1)
i,j + ψ

(k+1)
i,j−1 ].

Equation (2.2) and (2.3) suggest that we start with an initial guess ω(0) and use equation (2.2) to
approximate ψ and call this ψ(1) and use this to solve for ω using equation (2.3) and call this as ω(1).
Continue this computations until you reach a specific convergence criterion. We will call this process
an outer iteration.

We will study in detail the finite-difference analogue of the vorticity equation (2.3) to derive the
AGE equations for its solution. Then, the AGE equations for the streamfunction equation (2.2) will
follow, since equation (2.2) is similar to equation (2.3) but with different coefficients.

3. THE AGE METHOD. If we use the boundary conditions ψ = 0 and ∂2ψ/∂n̂2 = 0 where n̂
denotes the normal to the boundary ∂Ω of Ω, then our problem amounts to solving successively (1.1)
and (1.2) with ψ = 0 and ω = 0 along ∂Ω. First, let us rewrite Equation (2.3) in matrix form as:

Aωk+1
(r) = f,

where, ω(r) = (ω1, ω2, · · · , ωm)T with ωj = (ω1j , ω2j , · · · , ωmj)T ,
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j = 1, 2, · · · ,m i.e. the m2 internal grid points are ordered row-wise parallel to the x-axis on the
square mesh, f = (f

1
, f

2
, · · · , f

m
)T with,

fj = h2(g1j , g2j , · · · , gmj)T and gij = g(xi, yj) for i, j = 1, 2, · · · ,m, (3.1)

and,

A =




A1 B1

C2 A2 B2

. . . . . . . . .

. . . . . . . . .
Cm−1 Am−1 Bm−1

Cm Am




(m2×m2)

,

Aj =




4 β1,j+1

β̂2,j+1 4 β2,j+1

. . . . . . . . .
. . . . . . . . .

β̂m−1,j+1 4 βm−1,j+1

β̂m,j+1 4




m×m

, j = 1, 2, · · · ,m;

Bj = diag(µ1j , µ2j , · · · , µm−1,j , µmj), j = 1, 2, · · · ,m− 1,

and

Cj = diag(µ̂1j , µ̂2j , · · · , µ̂m−1,j , µ̂mj), j = 2, 3, · · · , m,

where

βij = −[Ã(k+1)
i+1,j−1 − α(ψ(k+1)

ij − ψ
(k+1)
i,j−2 )], i= 1, 2, · · · ,m− 1;j = 2, 3, · · · ,m + 1; (3.2)

β̂ij = −[Ã(k+1)
i−1,j−1 + α(ψ(k+1)

ij − ψ
(k+1)
i,j−2 )], i = 2, 3, · · · ,m;j = 2, 3, · · · ,m + 1; (3.3)

µij = −[Ã(k+1)
i,j+1 + α(ψ(k+1)

i+1,j − ψ
(k+1)
i−1,j )], i = 1, 2, · · · ,m;j = 2, 3, · · · ,m− 1; (3.4)

and

µ̂ij = −[Ã(k+1)
i,j−1 − α(ψ(k+1)

i+1,j − ψ
(k+1)
i−1,j ], i = 1, 2, · · · ,m; j = 2, 3, · · · , m. (3.5)

If we split A into the sum of its constituent matrices G1, G2, G3, G4 as,

A = G1 + G2 + G3 + G4,

then following [14] we have,

G1 + G2 = diag(Â1, Â2, · · · , Âm)(m2×m2),

and

G3 + G4 =




D B1

C2 D B2

. . . . . . . . .

Cm−1 D Bm−1

Cm D




(m2×m2)

,
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where,

Âj =




2 β1,j+1

β̂2,j+1 2 β2,j+1

. . . . . . . . .
β̂m−1,j+1 2 βm−1,j+1

β̂m,j+1 2




m×m

, j = 1, 2, · · · ,m;

and

D = diag(2, 2, · · · , 2).

The AGE Douglas fractional formulae then are written in the following form,

(G1 + rI)ω(p+1/4)
(r) = ((rI + G1)− 2A)ω(p)

(r) + 2f, (3.6)

(G2 + rI)ω(p+1/2)
(r) = G2ω

(p)
(r) + rω

(p+1/4)
(r) , (3.7)

(G3 + rI)ω(p+3/4)
(r) = G3ω

(p)
(r) + rω

(p+1/2)
(r) , (3.8)

(G4 + rI)ω(p+1)
(r) = G4ω

(p)
(r) + rω

(p+3/4)
(r) . (3.9)

In equations (3.6 - 3.9), p represents the index for the inner iteration procedure and r is the acceleration
parameter. Without loss of generality, we assume that m is odd.

From equations (3.6 - 3.9), we will write ω
p+1/4
ij , ω

p+1/2
ij , ω

p+3/4
ij , ωp+1

ij in explicit form. We start
by multiplying equation (3.6) by the inverse of the matrix (rI + G1). But the matrix (rI + G1)
is a block-diagonal matrix of 2 × 2 or 1 × 1 matrices. Fortunately, we have a closed form for the
inverse of (rI + G1). After some mathematical manipulations, we write ω

p+1/4
ij in an explicit form in

terms of ω
(p−1)
ij , βij , β̂ij , µij , µ̂ij , fij . Then, we repeat the same process to write ω

(p+1/2)
ij by using

equation (3.7). To write ω
(p+3/4)
ij and ω

(p+1)
ij in explicit form, we start by reordering the mesh points

column-wise parallel to the y-axis then we apply the same process. Now, let us start at (p + 1)th
iterate.

(i) At the (p + 1/4)th iterate
From (3.6) we have

ω
(p+1/4)
(r) = (G1 + rI)−1[((rI + G1)− 2A)ω(p)

(r) + 2f ].

We find that,

rI + G1 = diag(Ĉ1, Ĉ2, · · · , Ĉm−1, Ĉm)(m2×m2), (3.10)

where

Ĉj = diag(r1, Ĝ2,j , Ĝ4,j , · · · , Ĝm−1,j)(m×m) for j = 1, 3, · · · ,m(odd),

and

Ĉj = diag(Ĝ1,j , Ĝ3,j , · · · , Ĝm−2,j , r1)m×m, for j = 2, 4, · · · ,m(even),

with

r1 = r + 1,

and

Ĝi,j =
[

r1 βi,j+1

β̂i+1,j+1 r1

]
, i = 1, 2, · · · ,m− 1 .
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Since rI + G1 is block diagonal, (3.10) gives,

(rI + G1)−1 = diag(Ĉ−1
1 , Ĉ−1

2 , · · · , Ĉ−1
m−1, Ĉ

−1
m )(m2×m2).

Defining

Di = Ĉi − 2Ai, i = 1, 2, · · · ,m;
Ei = −2Ci, i = 2, 3, · · · ,m;
Fi = −2Bi, i = 1, 2, · · · ,m− 1;

we obtain the following set of equations at the (p + 1/4)th iterate,

ω
(p+1/4)
1(r) = Ĉ−1

1 (D1ω
(p)
1(r) + F1ω

(p)
2(r) + 2f

1
), (3.11)

ω
(p+1/4)
j(r) = Ĉ−1

j (Ejω
(p)
j−1(r) + Djω

(p)
j(r) + Fjω

(p)
j+1(r) + 2f

j
), j = 2, 3, · · · ,m− 2,m− 1, (3.12)

and

ω
(p+1/4)
m(r) = Ĉ−1

m (Emω
(p)
m−1(r) + Dmω

(p)
m(r) + 2f

m
), (3.13)

and

Ĉ−1
j = diag(

1
r1

, (Ĝ2,j)−1, ((Ĝ4,j)−1, · · · , ((Ĝm−1,j)−1)(m×m), forj = 1, 3, · · · ,m;

Ĉ−1
j = diag((Ĝ1,j)−1, ((Ĝ3,j)−1, · · · , ((Ĝm−2,j)−1,

1
r1

)(m×m), forj = 2, 4, · · · ,m− 1;

with

(Ĝi,j)−1 =
1
4i,j

[
r1 −βi,j+1

−β̂i+1,j+1 r1

]
,

and

4i,j = r2
1 − βi,j+1β̂i+1,j+1.

Writing equation (3.11) component-wise gives

ω
(p+1/4)
11 = 2[

r2

2
ω

(p)
11 − β12ω

(p)
21 − µ11ω

(p)
21 + f11]/r1, (3.14)

ω
(p+1/4)
i,1 = 2(aiω

(p)
i−1,1 + biω

(p)
i,1 + ciω

(p)
i+1,1 + diω

(p)
i+2,1 + eiω

(p)
i,2

+ fiω
(p)
i+1,2 + gi)/4i,1, (3.15)

ω
(p+1/4)
i+1,1 = 2(aiω

(p)
i−1,1 + biω

(p)
i,1 + biω

(p)
i+1,1 + diω

(p)
i+2,1 + eiω

(p)
i,2

+ f iω
(p)
i+1,2 + gi)/4i,1, for i = 2, 4, · · · , m− 3,m− 1, (3.16)

where

ai = −r1β̂i,2, bi = (r1r2 + βi,2β̂i+1/2)/2, ci = −r3βi,2,

ei = −r1µi,1, fi = βi,2µi+1,1, gi = r1fi,1 − βi,2fi+1,1,

ai = β̂i,2β̂i+1,2, bi = −r3β̂i+1,2, e = β̂i+1,2µi,1,

f i = −r1µi+1,1, gi = r1fi+1,1 − β̂i+1,2fi,1,

r2 = r1 − 8, r3 = r1 − 4,

di =

{
βi,2βi+1,2, if i 6= m− 1;
0, if i = m− 1,

di =

{
−r1βi+1,2, if i 6= m− 1;
0, if i = m− 1.
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In the same manner, writing equations (3.12) and (3.13)component-wise give
{

ω
(p+1/4)
i,j = 2(r1qi,j − βi,j+1qij)/4ij

ω
(p+1/4)
i+1,j = 2(−β̂i+1,j+1qij + r1qij)/4ij

}
, j = 2, 4, · · · ,m− 1; i = 1, 3, · · · ,m− 2, (3.17)

ω
(p+1/4)
m,j = 2(−µmjω

(p)
m,j−1 − β̂m,j+1ω

(p)
m−1,j +

r2

2
ω

(p)
mj − µmjω

(p)
m,j+1 + fm,j)/r1,

for j = 2, 4, · · · ,m− 1, (3.18)

where

qij =

{
−µi,jω

(p)
i,j−1 − β̂i,j+1ω

(p)
i−1,j + r2

2 ω
(p)
i,j − βi,j+1

2 ω
(p)
i+1,j − µi,jω

(p)
i,j+1 + fi,j , if i 6= 1;

−µi,jω
(p)
i,j−1 + r2

2 ω
(p)
i,j − βi,j+1

2 ω
(p)
i+1,j − µi,jω

(p)
i,j+1 + fi,j , , if i = 1,

qij =





−µ̂i+1,jω
(p)
i+1,j−1 − β̂i+1,j+1

2 ω
(p)
i,j + r2

2 ω
(p)
i+1,j − βi+1,j+1ω

(p)
i+2,j−

µi+1,jω
(p)
i+1,j+1 + fi+1,j , if i 6= m− 1,

−µ̂i+1,jω
(p)
i+1,j−1 − β̂i+1,j+1

2 ω
(p)
i,j + r2

2 ω
(p)
i+1,j + fi+1,j , if i = m− 1

and




ω
(p+1/4)
1j = 2(−µ̂1jω

(p)
1,j−1 + r2

2 ω
(p)
1j − β1,j+1ω

(p)
2j − µ1jω

(p)
1,j+1 + f1j)/r1,

for j = 3, 5, · · · ,m− 2
ω

(p+1/4)
1,m = 2(−µ̂1mω

(p)
1,m−1 + r2

2 ω
(p)
1m − β1,m+1ω

(p)
2m + f1m)/r1





, (3.19)

{
ω

(p+1/4)
i,j = 2(r1qij − βi,j+1qij)/4ij

ω
(p+1/4)
i+1,j = 2(−β̂i+1,j+1qij + r1qij)/4ij

}
, j = 3, 5, · · · , m−2,m; i = 2, 4, · · · , m−3,m−1, (3.20)

(ii) At the (p + 1/2)th iterate

Equation (3.7) gives

ω
(p+1/2)
(r) = (G2 + rI)−1(G2ω

(p)
(r) + rω

(p+1/4)
(r) ). (3.21)

We define,

(rI + G2) = diag( ˆ̂
C1,

ˆ̂
C2, · · · ,

ˆ̂
Cm−1,

ˆ̂
Cm)(m2×m2),

where

ˆ̂
Cj = diag( ˆ̂

C1,j ,
ˆ̂
C3,j , · · · ,

ˆ̂
Cm−2,j , r1)(m×m), j = 1, 3, · · · ,m(odd),

and

ˆ̂
Cj = diag(r1, Ĝ2,j , Ĝ4,j , · · · , Ĝm−1,j)(m×m), j = 2, 4, · · · ,m− 1(even),

Denoting Cj ≡ ˆ̂
Cj but the diagonal element r1 replaced by 1, equation (3.21) becomes

ω
(p+1/2)
j(r) = ( ˆ̂

Cj)−1(Cjω
(p)
j(r) + rω

(p+1/4)
j(r) , j = 1, 2, · · · ,m ,

which leads to
{

ω
(p+1/2)
i,j = (r1si,j − βi,j+1si,j)/4i,j ,

ω
(p+1/2)
i+1,j = (−β̂i+1,j+1si,j + r1si,j)/4i,j ,

}
, j = 1, 3, · · · ,m; i = 1, 3, · · · ,m− 2 , (3.22)
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ω
(p+1/2)
m,j = (ω(p)

m,j + rω
(p+1/4)
m,j )r1, j = 1, 3, · · · ,m , (3.23)

and

ω
(p+1/2)
1,j = (ω(p)

(1,j) + rω
(p+1/4)
(1,j) )/r1, j = 2, 4, · · · ,m− 1 , (3.24)

{
ω

(p+1/2)
i,j = (r1si,j − βi,j+1si,j)/4i,j ,

ω
(p+1/2)
i+1,j = (−β̂i+1,j+1si,j + r1si,j)/4i,j ,

}
, j = 2, 4, · · · ,m− 1; i = 2, 4, · · · ,m− 1, (3.25)

where

si,j = ω
(p)
i,j + βi,j+1ω

(p)
i+1,j + rω

(p+1/4)
i,j ,

and

si,j = β̂i+1,j+1ω
(p)
i,j + ω

(p)
i+1,j + rω

(p+1/4)
i+1,j .

(iii) At the (p + 3/4)th iterate

By ordering the mesh points column-wise parallel to the y-axis we have,

ω(c) = (ω1, ω2, · · · , ωm)T with ω(i) = (ωi1, ωi2, · · · , ωim)T , i = 1, 2, · · · ,m,

and

(G3 + G4)ω(r) = (G3 + G4)ω(c).

This reordering transforms equation (3.8) to

(G3 + rI)ω(p+3/4)
(c) = G3ω

(p)
(c) + rω

(p+1/2)
(c) .

or

ω
(p+3/4)
(c) = (G3 + rI)−1(G3ω

(p)
(c) + rω

(p+1/2)
(c) . (3.26)

Now

G3 + G4 = diag(B̂1, B̂2, · · · , B̂m−1B̂m)(m2×m2),

where

B̂i =




2 µi,1

µ̂i,1 2 µi,2

µ̂i,3
. . . 2 µi,3

. . . µ̂i,m−1
. . . 2

. . . µi,m−1

µ̂i,m 2




(m×m)

, i = 1, 2, · · · ,m;

We also found that

(G3 + rI) = diag(H1,H2, · · · ,Hm−1, Hm)(m2×m2),

where

Hi = diag(r1, Ĥi,2, Ĥi,4, · · · , Ĥi,m−1)(m×m), j = 1, 3, · · · ,m(odd),

and

Hi = diag(Ĥi,1, Ĥi,3, · · · , Ĥi,m−2, r1)(m×m), j = 2, 4, · · · ,m− 1(even),
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with

Ĥi,j =
[

r1 µi,j

µ̂i,j+1 r1

]
, j = 1, 2, · · · , m− 1 .

Denoting Pi ≡ Hi but with the diagonal element r1 replaced by 1, equation (3.26) then becomes

ω
(p+3/4)
(c) = H−1

i (Piω
(p)
i(c) + rω

(p+1/2)
i(c) ), i = 1, 2, · · · ,m,

where

H−1
i = diag(

1
r1

, (Ĥi,2)−1, (Ĥi,4)−1, · · · , (Ĥi,m−1)−1)(m×m), i = 1, 3, · · · ,m;

and

H−1
i = diag( (Ĥi,1)−1, (Ĥi,3)−1, · · · , (Ĥi,m−1)−1,

1
r1

)(m×m), i = 2, 4, · · · ,m− 1;

with

(Ĥi,j)−1 =
1
4i,j

[
r1 −µi,j

−µ̂i,j+1 r1

]
,

and

4̂j,i = r2
1 − µi,j µ̂i,j+1.

This results in the following equations for the computation at the current intermediate level

ω
(p+3/4)
i,1 = (ω(p)

i,1 + rω
(p+1/2)
i,1 )/r1, i = 1, 3, · · · ,m, (3.27)

{
ω

(p+3/4)
i,j = (r1vi,j − µi,jvi,j)/4̂j,i, and

ω
(p+3/4)
i,j+1 = (−µi,j+1vi,j + r1vi,j)/4̂j,i,

}
, i = 1, 3, · · · ,m; j = 2, 4, · · · ,m− 1 , (3.28)

and
{

ω
(p+3/4)
i,j = (r1vi,j − µi,jvi,j)/4̂j,i, and

ω
(p+3/4)
i,j+1 = (−µi,j+1vi,j + r1vi,j)/4̂j,i,

}
, i = 2, 4, · · · ,m− 1; j = 1, 3, · · · , m− 2 , (3.29)

ω
(p+3/4)
i,m = (ω(p)

i,m + r ω
(p+1/2)
i,m )/r1, i = 2, 4, · · · , m− 1, (3.30)

where

vi,j = ω
(p)
i,j + µi,jω

(p)
i,j+1 + rω

(p+1/2)
i,j ,

vi,j = ω
(p)
i,j+1 + µ̂i,j+1ω

(p)
i,j + rω

(p+1/2)
i,j+1 .

(iv) At the (p + 1)th iterate

Equation (3.9) is now transformed to

(G4 + rI)ω(p+1)
(c) = G4ω

(p)
(c) + rω

(p+3/4)
(c) ,

or

ω
(p+1)
(c) = (G4 + rI)−1(G4ω

(p)
(c) + rω

(p+3/4)
(c) ), (3.31)
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we have

(G4 + rI) = diag(H1, H2, · · · , Hm−1,Hm)(m2×m2),

where

Hi = diag(Ĥi,1, Ĥi,3, · · · , Ĥi,m−2, r1)(m×m), i = 1, 3, · · · ,m(odd),

and

Hi = diag(r1, Ĥi,2, Ĥi,4, · · · , Ĥi,m−1)(m×m), i = 2, 4, · · · ,m(even).

Denoting Qi ≡ Hi (with the diagonal element r1 replaced by 1), equation (3.31) can be written as

ω
(p+1)
i(c) = (Hi)−1(Qiω

(p)
i(c) + rω

(p+3/4)
i(c) , i = 1, 2, · · · ,m,

and as at the previous iterate, we obtain the following equations for computation

ω
(p+1)
i,j = (r1zi,j − µi,jzi,j)/4̂j,i, (3.32)

ω
(p+1)
i,j+1 = (−µ̂i,j+1zi,j + r1zi,j)/4j,i, i = 1, 3, · · · ,m, j = 1, 3, · · · ,m− 2 (3.33)

ω
(p+1)
i,m = (ω(p)

i,m + rω
(p+3/4)
i,m )/r1, i = 1, 3, · · · ,m , (3.34)

and

ω
(p+1)
i,1 = (ω(p)

i,1 + rω
(p+3/4)
i,1 )/r1, i = 2, 4, · · · ,m− 1, (3.35)

ω
(p+1)
i,j = (r1zi,j − µi,jzi,j)/4̂j,i, (3.36)

ω
(p+1)
i,j+1 = (−µ̂i,j+1zi,j + r1zi,j)/4̂j,i, i = 2, 43, · · · ,m− 1, j = 2, 4, · · · ,m− 1 , (3.37)

where

zi,j = ω
(p)
i,j + µi,jω

(p)
i,j+1 + rω

(p+3/4)
i,j ,

zi,j = ω
(p)
i,j+1 + µ̂i,j+1ω

(p)
i,j + rω

(p+3/4)
i,j+1 .

Hence, we write ω
(p+1/4)
ij , ω

(p+1/2)
ij , ω

(p+3/4)
ij , ω

(p+1)
ij in an explicit equations. These equations are

listed in the following table.

Table 3.1
Equations for all four intermediate steps

Intermediate step Equation Number
(3.14), (3.15), (3.16),

ω
p+1/4
ij (3.17), (3.18), (3.19),

(3.20)
ω

p+1/2
ij (3.22), (3.23), (3.24),

(3.25)
ω

p+3/4
ij (3.27), (3.28), (3.29),

(3.30)
ωp+1

ij (3.32), (3.33), (3.34),
(3.35), (3.36), (3.37)

4. NUMERICAL ALGORITHM. From Section(3), an algorithm can now be formulated
to solve the equation (1.2). Given all the data of the problem and an initial approximation ωold

ij ,
INNER-AGE ALGORITHM will compute a better approximation ωnew

ij .
After we state the INNER-AGE ALGORITHM, we are ready to solve equations (1.1) and (1.2).

This is described in OUTER-AGE ALGORITHM which will compute an approximation for the
streamfunction ψ and the vorticity ω.



10

Algorithm 1 (INNER-AGE ALGORITHM)

Given: βij , β̂ij , µij , µ̂ij , fij , Re, ε1, q, m, r,
ε and ωold

ij , This algorithm computes ωnew
ij

p=0
ω

(p)
ij = ωold

ij

repeat
step 1

4 : Compute ω
(p+1/4)
ij

by using equation (3.14), (3.15), (3.16), (3.17), (3.18), (3.19),(3.20)
step 1

2 : Compute ω
(p+1/2)
ij

by using equation (3.22), (3.23), (3.24), (3.25)
step 3

4 : Compute ω
(p+3/4)
ij

by using equation (3.27), (3.28), (3.29), (3.30)
step 1: Compute ω

(p+1)
ij

by using equation (3.32), (3.33), (3.34), (3.35), (3.36), (3.37)
step 2: Compute τ = max

i,j
{ | ω(p+1)

ij − ω
(p)
ij | } and set p = p + 1

until (τ < ε)
ω

(new)
ij = ω

(p)
ij

Algorithm 2 (OUTER-AGE ALGORITHM)

Given:
• problem parameters: Re, ε1, q
• acceleration-parameter: r
• mesh-size: m
• inner-convergence-criterion: ε
• outer-convergence criterion: δ

This algorithm computes an approximation for ψ and ω

Set k = 0 and h = 1
m+1

Set ψ
(k)
ij = 0 and ω

(k)
ij = 0 as initial approximations

Compute fij using equation (3.1)
repeat

Compute ψ
(k+1)
ij using INNER-AGE ALGORITHM

[ Here, Re = 0, ψ
(k)
ij replaces ωold

ij , ψ
(k+1)
ij replaces ωnew

ij , fij = h2ω
(k)
ij ]

Compute τ = max
i,j

{ | ψ(k+1)
ij − ψ

(k)
ij |, | ω(k−1)

ij − ω
(k)
ij | } ( do this step if k > 0)

Compute Ã
(k+1)
ij using equation (2.4)

Compute βij , β̂ij , µij , µ̂ij using equation ( 3.2, 3.3, 3.4, 3.5 )
Compute ω

(k+1)
ij using INNER-AGE ALGORITHM

Compute τ = max
i,j

{ | ψ(k+1)
ij − ψ

(k)
ij |, | ω(k+1)

ij − ω
(k)
ij | } and set k = k + 1

until (τ < δ)
ω

(new)
ij = ω

(p)
ij

5. NUMERICAL EXAMPLES. This section presents the results of numerical experiment
with the (AGE) iterative algorithm described in section OUTER-AGE ALGORITHM. Specifically,
we consider one example with known exact solution. This example has been studied in [8, 15]. For
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this section, the region Ω is the unit square 0 < x < 1, 0 < y < 1 and the exact solution is

ψ∗(x, y) = x2(x− 1)2y2(y − 1)2,
ω∗(x, y) = −4 ψ∗(x, y).

Example 1:
We consider the following Ladyzhenskaya-type equations

42ψ = −w in Ω,

4(A(ψ)w) + Re(ψxwy − ψywx) = −g on ∂Ω,

subject to the boundary conditions

(x, 0) = ψ(x, 1)= w(x, 0) = w(x, 1)= 0, 0 ≤ x ≤ 1,

ψ(0, y) = ψ(1, y)= w(0, y) = w(1, y)= 0, 0 ≤ y ≤ 1,

where the function g is defined as

g = 4(Ã(ψ∗)4 ψ∗)−Re(ψ∗y 4 ψ∗x − ψ∗x 4 ψ∗y).

The value of the Reynolds number is Re = 50 with the following parameters ε1 = 10−20,m = 29, h =
1
30 , q = 4, and r = 0.8. The termination criteria for the outer and inner iteration, i.e., δ and ε are chosen
as δ = 10−5, ε = 10−13. the number of iterations required to attain convergence is 2. The numbers
of inner iterations required for the first outer iteration are 1, 489. The numbers of inner iterations
required for the second outer iteration are 436, 0. Table(5.1) and Table(5.3) display the values of
the exact solution ψ∗ and the computed values of the streamfunction ψh. Table(5.2) and Table(5.4)
display the values of the exact solution ω∗ and the computed values of the vorticity ωh. A quick
comparison between Table(5.1) Table(5.3) shows an agreement. Similarly, Table(5.2) and Table(5.4)
also shows an agreement. The values in Table(5.3) and Table(5.4) are good approximations to the
exact solution. Figure(5.1(a)) and Figure(5.1(c)) show the contours for the exact solution ψ∗ and
the computed solution ψh. Figure(5.1(b)) and figure(5.1(d)) show the contours for the exact solution
ω∗ and the computed solution ωh. From Figure(5.1), we can see a good agreement between each
corresponding graphs.

Table 5.1
Exact values of ψ∗ at (x, y) where x, y = 0.1, 0.3, 0.5, 0.7, 0.9

ψ∗

.962361E-02 .249272E-01 .306563E-01 .249272E-01 .962361E-02

.249272E-01 .645668E-01 .794062E-01 .645668E-01 .249272E-01

.306563E-01 .794062E-01 .976563E-01 .794063E-01 .306563E-01

.249272E-01 .645668E-01 .794063E-01 .645668E-01 .249272E-01

.962361E-02 .249272E-01 .306563E-01 .249272E-01 .962361E-02

Table 5.2
Exact values of ω∗ at (x, y) where x, y = 0.1, 0.3, 0.5, 0.7, 0.9

ω∗

.211896E+00 .521640E+00 .631800E+00 .521640E+00 .211896E+00

.521640E+00 .128066E+01 .154980E+01 .128066E+01 .521640E+00

.631800E+00 .154980E+01 .187500E+01 .154980E+01 .631800E+00

.521640E+00 .128066E+01 .154980E+01 .128066E+01 .521640E+00

.211896E+00 .521640E+00 .631800E+00 .521640E+00 .211896E+00
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Table 5.3
Computed values of ψh at (x, y) where x, y = 0.1, 0.3, 0.5, 0.7, 0.9

ψh

.963875E-02 .248545E-01 .307007E-01 .250736E-01 .963875E-02

.250736E-01 .646559E-01 .795136E-01 .646559E-01 .248545E-01

.307007E-01 .795136E-01 .977855E-01 .795136E-01 .307007E-01

.248545E-01 .646559E-01 .795136E-01 .646559E-01 .250736E-01

.963875E-02 .250736E-01 .307007E-01 .248545E-01 .963875E-02

Table 5.4
Exact values of ωh at (x, y) where x, y = 0.1, 0.3, 0.5, 0.7, 0.9

ωh

.212004E+00 .498832E+00 .632100E+00 .544952E+00 .212004E+00

.544952E+00 .128125E+01 .155050E+01 .128125E+01 .498832E+00

.632100E+00 .155050E+01 .187583E+01 .155050E+01 .632100E+00

.498832E+00 .128125E+01 .155050E+01 .128125E+01 .544952E+00

.212004E+00 .544952E+00 .632100E+00 .498832E+00 .212004E+00

 

(a) Contours of the exact solution ψ∗ (b) Contours of the exact solution ω∗

(c) Contours of the computed solution ψh (d) Contours of the computed solution ωh

Fig. 5.1. Contours of the exact and computed solutions
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Fig. 5.2. ψh-streamfunction lines at different values of the Reynolds numbers through the horizontal line y = 0.5.

Example 2:
We consider the same problem in Example(1) with the following parameters:

ε1 = 10−3, q = 4,m = 29, r = 0.8 ,

ε = 10−5, δ = 10−13, h =
1
30

.

We compute an approximate solution for Re = 1, 10, 102, 103, 5× 103, 104, 3× 104, 6× 104, 105.
Figure(5.2) displays the plot of the streamfunction along the vertical line x = 1

2 passing through
the point (0.5, 0.5) with the above values for Reynolds numbers. Also, the numerical programs were
performed for a series of different values of the Reynolds numbers between 1 and 1000. Each time,
we evaluate the difference between the exact solution ψ∗ and the computed solution. Then, we plot
the graph in Figure(5.3). The horizontal axis of the graph represents log10(Re) and the vertical axis
represents || ψ∗ − ψcomputed ||L2 . We can see more clearly the fact that the difference in the discrete
norm increases as Re increases.
Example 3:
We conducted convergence tests to obtained error estimates and assess the order of accuracy. We
solve the same problem in Example (1) with different mesh size h. The parameters of the problem
are:

ε1 = 10−20, q = 4, r = 0.8, Re = 1.0 .

In Table (5.5) we show the discrete L2 norm || ψ∗ − ψh ||L2 where ψh denotes the computational
solution on an m×m grid (h = 1

m+1 ). The convergence rates are computed using the information on
two successive meshes.
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Fig. 5.3. Difference between the exact solution ψ∗ and the computed solution ψh .vs. log10(Re).

Table 5.5
Error estimate and order of convergence

m h || ψ∗ − ψh ||L2 order of convergence
9 1

10 1.9647844e-004
13 1

14 1.4015979e-004 1.0038
19 1

20 9.8045095e-005 1.0019
23 1

24 8.1689733e-005 1.0009
29 1

30 6.5346024e-005 1.0003
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