SEC 9.13

3. Using $f(x, y)=z=\sqrt{16-x^{2}}$ we see that for $0 \leq x \leq 2$ and $0 \leq y \leq 5, z>0$.

Thus, the surface is entirely above the region. Now $f_{x}=-\frac{x}{\sqrt{16-x^{2}}}, f_{y}=0$,
$1+f_{x}^{2}+f_{y}^{2}=1+\frac{x^{2}}{16-x^{2}}=\frac{16}{16-x^{2}}$ and

$$
A=\int_{0}^{5} \int_{0}^{2} \frac{4}{\sqrt{16-x^{2}}} d x d y=\left.4 \int_{0}^{5} \sin ^{-1} \frac{x}{4}\right|_{0} ^{2} d y=4 \int_{0}^{5} \frac{\pi}{6} d y=\frac{10 \pi}{3} .
$$

11. There are portions of the surface in each octant with areas equal to the area of the portion in the first octant. Using $f(x, y)=z=\sqrt{a^{2}-y^{2}}$ we have $f_{x}=0, f_{y}=\frac{y}{\sqrt{a^{2}-y^{2}}}$, $1+f_{x}^{2}+f_{y}^{2}=\frac{a^{2}}{a^{2}-y^{2}}$. Then

$$
A=8 \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}} \frac{a}{\sqrt{a^{2}-y^{2}}} d x d y=\left.8 a \int_{0}^{a} \frac{x}{\sqrt{a^{2}-y^{2}}}\right|_{0} ^{\sqrt{a^{2}-y^{2}}} d y=8 a \int_{0}^{a} d y=8 a^{2} .
$$

26. Write the equation of the surface as $x=6-2 y-3 z$. Then $x_{y}=-2, x_{z}=-3 ; \quad d S=\sqrt{1+4+9}=\sqrt{14}$.

$$
\begin{aligned}
\iint_{S}\left(3 z^{2}+4 y z\right) d S & =\int_{0}^{2} \int_{0}^{3-3 z / 2}\left(3 z^{2}+4 y z\right) \sqrt{14} d y d z=\left.\sqrt{14} \int_{0}^{2}\left(3 y z+2 y^{2} z\right)\right|_{0} ^{3-3 z / 2} d z \\
& =\sqrt{14} \int_{0}^{2}\left[9 z\left(1-\frac{z}{2}\right)+18 z\left(1-\frac{z}{2}\right)^{2}\right] d z=\sqrt{14} \int_{0}^{2}\left(27 z-\frac{45}{2} z^{2}+\frac{9}{2} z^{3}\right) d z \\
& =\left.\sqrt{14}\left(\frac{27}{2} z^{2}-\frac{15}{2} z^{3}+\frac{9}{8} z^{4}\right)\right|_{0} ^{2}=\sqrt{14}(54-60+18)=2 \sqrt{14}
\end{aligned}
$$

33. The surface is $g(x, y, z)=x^{2}+y^{2}+z-4 . \quad \nabla g=2 x \mathbf{i}+2 y \mathbf{j}+\mathbf{k}$,
$|\nabla g|=\sqrt{4 x^{2}+4 y^{2}+1} ; \mathbf{n}=\frac{2 x \mathbf{i}+2 y \mathbf{j}+\mathbf{k}}{\sqrt{4 x^{2}+4 y^{2}+1}} ; \mathbf{F} \cdot \mathbf{n}=\frac{x^{3}+y^{3}+z}{\sqrt{4 x^{2}+4 y^{2}+1}} ;$
$z_{x}=-2 x, z_{y}=-2 y, d S=\sqrt{1+4 x^{2}+4 y^{2}} d A$. Using polar coordinates,

$$
\begin{aligned}
\text { Flux } & =\iint_{S} \mathbf{F} \cdot \mathbf{n} d S=\iint_{R}\left(x^{3}+y^{3}+z\right) d A=\iint_{R}\left(4-x^{2}-y^{2}+x^{3}+y^{3}\right) d A \\
& =\int_{0}^{2 \pi} \int_{0}^{2}\left(4-r^{2}+r^{3} \cos ^{3} \theta+r^{3} \sin ^{3} \theta\right) r d r d \theta \\
& =\left.\int_{0}^{2 \pi}\left(2 r^{2}-\frac{1}{4} r^{4}+\frac{1}{5} r^{5} \cos ^{3} \theta+\frac{1}{5} r^{5} \sin ^{3} \theta\right)\right|_{0} ^{2} d \theta \\
& =\int_{0}^{2 \pi}\left(4+\frac{32}{5} \cos ^{3} \theta+\frac{32}{5} \sin ^{3} \theta\right) d \theta=\left.4 \theta\right|_{0} ^{2 \pi}+0+0=8 \pi .
\end{aligned}
$$

