SEC 4.2

5. $\mathscr{L}^{-1}\left\{\frac{(s+1)^{3}}{s^{4}}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{s}+3 \cdot \frac{1}{s^{2}}+\frac{3}{2} \cdot \frac{2}{s^{3}}+\frac{1}{6} \cdot \frac{3!}{s^{4}}\right\}=1+3 t+\frac{3}{2} t^{2}+\frac{1}{6} t^{3}$
6. $\mathscr{L}^{-1}\left\{\frac{4 s}{4 s^{2}+1}\right\}=\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+1 / 4}\right\}=\cos \frac{1}{2} t$
7. $\mathscr{L}^{-1}\left\{\frac{2 s-6}{s^{2}+9}\right\}=\mathscr{L}^{-1}\left\{2 \cdot \frac{s}{s^{2}+9}-2 \cdot \frac{3}{s^{2}+9}\right\}=2 \cos 3 t-2 \sin 3 t$
8. $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+2 s-3}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{4} \cdot \frac{1}{s-1}+\frac{3}{4} \cdot \frac{1}{s+3}\right\}=\frac{1}{4} e^{t}+\frac{3}{4} e^{-3 t}$
9. The Laplace transform of the initial-value problem is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)+5[s \mathscr{L}\{y\}-y(0)]+4 \mathscr{L}\{y\}=0 .
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{s+5}{s^{2}+5 s+4}=\frac{4}{3} \frac{1}{s+1}-\frac{1}{3} \frac{1}{s+4} .
$$

Thus

$$
y=\frac{4}{3} e^{-t}-\frac{1}{3} e^{-4 t}
$$

36. The Laplace transform of the initial-value problem is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)-4[s \mathscr{L}\{y\}-y(0)]=\frac{6}{s-3}-\frac{3}{s+1} .
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\begin{aligned}
\mathscr{L}\{y\} & =\frac{6}{(s-3)\left(s^{2}-4 s\right)}-\frac{3}{(s+1)\left(s^{2}-4 s\right)}+\frac{s-5}{s^{2}-4 s} \\
& =\frac{5}{2} \cdot \frac{1}{s}-\frac{2}{s-3}-\frac{3}{5} \cdot \frac{1}{s+1}+\frac{11}{10} \cdot \frac{1}{s-4} .
\end{aligned}
$$

Thus

$$
y=\frac{5}{2}-2 e^{3 t}-\frac{3}{5} e^{-t}+\frac{11}{10} e^{4 t} .
$$

