Sec 13.5

2. Using u = XY and —\ as a separation constant we obtain

X"+ AX =0,
X(0)=0,
X(a) =10,
and
Y- AY =0
Y'(0) = 0.
With A = a? = 0 the solutions of the differential equations are

X = e cosar + eos8inar and Y = e3coshay + c4 sinh ay
The boundary and initial conditions imply
. nmw nmw
X =¢eogin —o and Y = e3 cosh —y
a a
forn=1, 2. 3, ... s0 that
]'?Jl
U= E A, sin
a
=1
[mposing
— nmh n
. . nwh | nw
w(r,b) = flz) = E A, cosh — sin —=z
! : a a
n=1
gives
.'I‘I',n
A, cosh— = f[:a sin —.,'L dx
s0 that
nmw mnw
ulxe,y) = E A, sin —;c cosh —uy
a
n=1
where

2 nw
A, = —sech—
@

f flzx)sin —.L dr.




4. Using u = XY and —A as a separation constant we obtain

X'+ AX =0,
X'(0) = 0,
X'a)=0,

and
Y7 —AY =0,

Yib) =
With A = a? = 0 the solutions of the differential equations are
X = ¢y cosar + g 8inar and Y = eqcoshay + ey sinh oy

The boundary and initial conditions imply

nw nw cosh —“‘:b
X =008 —1 and Y =egcosh —y — ¢
a i

L
3———2— sinh —y
sinh 2zt i

forn=1,2,3,.... Since A = 0 is an eigenvalue for both differential equations with corresponding eigenfunctions

1 and y — b, respectively we have

b
nw n,. cosh 222 par
w= Ag(y—b) + E A, cos —x | cosh ———sinh—y|.
@ a sinh 2= a

n=1

[mposing
u(x,0) =x = —Agb + Z A, cos —;1
n=1
gives
1 1
—Aph = —f rdr = —a
a Jip 2
and
2 f nw
An=—[ rcos —xdr = 2 2[I.—J.J 1]
a Jo a n
so that
.oa . 2a (-1 =1 nrm nw cosh =zb nw
u(r, ¥l = —(b—y)+ — —ccrs—:v cosh —y — ———2_gin h—i:.r
T ) 2b" ) w2 ; n2 a a sinh 2r&




8. Using u = XY and —A as a separation constant we obtain
X" +AX =0,
X(0)=0,
X(1)=0,

and
Y'Y =0,

Y'(0) = Y(0).
With A = a? > 0 the solutions of the differential equations are
X = cycosar + cpsinax and Y = ey coshay + ¢4 sinh ay
The boundary and initial conditions imply
X = ecpsinnmr and Y = cy(ncoshnmy + sinhnmry)

forn=1, 2, 3, ... 50 that

T
U = Z A, (ncoshnmy + sinh nry) sinnre.
n=1
Imposing
u(z, 1) = f(z) = Z A, (ncoshnm + sinhnw) sin nre
n=1
gives

. 2 [T .
A, (ncoshnm + sinhnm) = — / flz)sinnmz dr
T Jo

forn=1, 2, 3, ... s0 that
u(z,y) = Z A, (ncoshnmy 4+ sinhnry) sinnrx

n=1

where

2 1
A, = / flz)sinnmr dr.
0

nm coshnm + wsinh nr




10. This boundary-value problem has the form of Problem 2 in this section, with ¢ = 1 and b = 1. Thus

solution has the form
=

ul(x,y) = Z (A,, coshnrx + B, sinhnrz)sinnry.
n=1

The boundary condition u(0,y) = 10y implies

10y = Z A, sinnmy

n=1
and )
2 . 20
A, == / 10y sin nwy dy = — (—1)" L.
1 /5 nw
At r=a,
L =7 nw L onT . onT
Gly) = ; (Ar_ cosh?a + B, sinh Ta) sin ?y

indicates that the entire expression in the parentheses is given hy

7 nmw 2 & nmw
A, cosh %a + B, sinh %a = Efg G(y) sin %y dy.
We can now solve for B, :

., nmw 25’,,_mr } nmw
B, sinh Ta = E]o. G(y)sin ?y dy — A, cosh Ta.

1 2 P .onmw ) nmw o
Bn=m(g/n. G(y]sm?yd.y—;lncosh?a). (6)

A solution to the given boundary-value problem consists of the series (4) with coefficients A, and B, given in
(5) and (6), respectively.

At r =a,
]

n=1

indicates that the entire expression in the parentheses is given hy
nmw . .onmw 2 . onw
A, cosh —a + B, sinh —a = — Gly) sin —y dy.
it b b Ja b
We can now solve for B, :

nw 2 L [ [
By, sinh %a e E]D. Gly)sin n—;y diy — Ay cosh ﬂ%a

1 2 (b . onw . nwT .
e m (E]c; Gy)sin T_u dy — A, cosh ?a) . (6)

A solution to the given boundary-value problem consists of the series (4) with coefficients 4,, and B,, given in

(5) and (6), respectively.

, the




14. Since the boundary conditions at r = 0 and x = a are functions of y we choose to separate Laplace’s equation

B‘S YJ‘.’ Y.’.’
z = = —A
X Y
so that
X'+XX =0
Y"—AY =o0.
Then with A = —a? we have

X(x) = e coshox + ez sinh ar
Yiy) = cacosay + ey sinay.

Now Y (0) = 0 gives ez = 0 and Y (b) = 0 implies sinab=0or a = nw/bforn =1, 2, 3, ... . Thus

Uy (r,y) = XY = (Ar_ cosh %:c + B, sinh %.}.) sin 'TET (]
and e
u(z,y) = ; (An cosh n_;rI + B, sinh ?1) sin %L"- (4)
At r =0 we then have -
Fy) =;A, sm%y

and consequently

. b T
A“:%/D. F(y]siu%yd-y. (5)




