Sec 12.5

2. For $\lambda < 0$ the only solution of the boundary-value problem is y = 0. For $\lambda = 0$ we have $y = c_1x + c_2$. Now $y' = c_1$ and the boundary conditions both imply $c_1 + c_2 = 0$. Thus, $\lambda = 0$ is an eigenvalue with corresponding eigenfunction $y_0 = x - 1$.

For $\lambda = \alpha^2 > 0$ we have

$$y = c_1 \cos \alpha x + c_2 \sin \alpha x$$

and

$$y'(x) = -c_1 \alpha \sin \alpha x + c_2 \alpha \cos \alpha x.$$

The boundary conditions imply

$$c_1 + c_2 \alpha = 0$$

$$c_1 \cos \alpha + c_2 \sin \alpha = 0$$

which gives

$$-c_2\alpha\cos\alpha + c_2\sin\alpha = 0$$
 or $\tan\alpha = \alpha$.

The eigenvalues are $\lambda_n = \alpha_n^2$ where $\alpha_1, \alpha_2, \alpha_3, \ldots$ are the consecutive positive solutions of $\tan \alpha = \alpha$. The corresponding eigenfunctions are $\alpha \cos \alpha x - \sin \alpha x$ (obtained by taking $c_2 = -1$ in the first equation of the system.) Using a CAS we find that the first four positive eigenvalues are 20.1907, 59.6795, 118.9000, and 197.858 with corresponding eigenfunctions $4.4934\cos 4.4934x - \sin 4.4934x$, $7.7253\cos 7.7253x - \sin 7.7253x$, $10.9041\cos 10.9041x - \sin 10.9041x$, and $14.0662\cos 14.0662x - \sin 14.0662x$.

4. For
$$\lambda = -\alpha^2 < 0$$
 we have

$$y = c_1 \cosh \alpha x + c_2 \sinh \alpha x$$

$$y' = c_1 \alpha \sinh \alpha x + c_2 \alpha \cosh \alpha x.$$

Using the fact that $\cosh x$ is an even function and $\sinh x$ is odd we have

$$y(-L) = c_1 \cosh(-\alpha L) + c_2 \sinh(-\alpha L)$$

= $c_1 \cosh \alpha L - c_2 \sinh \alpha L$

and

$$y'(-L) = c_1 \alpha \sinh(-\alpha L) + c_2 \alpha \cosh(-\alpha L)$$

= $-c_1 \alpha \sinh \alpha L + c_2 \alpha \cosh \alpha L$.

The boundary conditions imply

$$c_1 \cosh \alpha L - c_2 \sinh \alpha L = c_1 \cosh \alpha L + c_2 \sinh \alpha L$$

or

$$2c_2 \sinh \alpha L = 0$$

and

$$-c_1\alpha\sinh\alpha L + c_2\alpha\cosh\alpha L = c_1\alpha\sinh\alpha L + c_2\alpha\cosh\alpha L$$

or

$$2c_1\alpha \sinh \alpha L = 0.$$

Since $\alpha L \neq 0$, $c_1 = c_2 = 0$ and the only solution of the boundary-value problem in this case is y = 0.

For $\lambda = 0$ we have

$$y = c_1 x + c_2$$
$$y' = c_1.$$

From y(-L) = y(L) we obtain

$$-c_1 L + c_2 = c_1 L + c_2.$$

Then $c_1 = 0$ and y = 1 is an eigenfunction corresponding to the eigenvalue $\lambda = 0$.

For $\lambda = \alpha^2 > 0$ we have

$$y = c_1 \cos \alpha x + c_2 \sin \alpha x$$

$$y' = -c_1 \alpha \sin \alpha x + c_2 \alpha \cos \alpha x.$$

The first boundary condition implies

$$c_1 \cos \alpha L - c_2 \sin \alpha L = c_1 \cos \alpha L + c_2 \sin \alpha L$$

or

$$2c_2 \sin \alpha L = 0.$$

Thus, if $c_1 = 0$ and $c_2 \neq 0$,

$$\alpha L = n\pi$$
 or $\lambda = \alpha^2 = \frac{n^2 \pi^2}{L^2}, \ n = 1, 2, 3, \dots$

The corresponding eigenfunctions are $\sin(n\pi x/L)$, for $n=1,\,2,\,3,\,\ldots$. Similarly, the second boundary condition implies

$$2c_1\alpha\sin\alpha L = 0.$$

If $c_1 \neq 0$ and $c_2 = 0$,

$$\alpha L = n\pi$$
 or $\lambda = \alpha^2 = \frac{n^2\pi^2}{L^2}$, $n = 1, 2, 3, \dots$,

and the corresponding eigenfunctions are $\cos(n\pi x/L)$, for $n=1, 2, 3, \ldots$

6. The eigenfunctions are $\sin \alpha_n x$ where $\tan \alpha_n = -\alpha_n$. Thus

$$\|\sin \alpha_n x\|^2 = \int_0^1 \sin^2 \alpha_n x \, dx = \frac{1}{2} \int_0^1 \left(1 - \cos 2\alpha_n x\right) \, dx$$

$$= \frac{1}{2} \left(x - \frac{1}{2\alpha_n} \sin 2\alpha_n x\right) \Big|_0^1 = \frac{1}{2} \left(1 - \frac{1}{2\alpha_n} \sin 2\alpha_n\right)$$

$$= \frac{1}{2} \left[1 - \frac{1}{2\alpha_n} \left(2 \sin \alpha_n \cos \alpha_n\right)\right]$$

$$= \frac{1}{2} \left[1 - \frac{1}{\alpha_n} \tan \alpha_n \cos \alpha_n \cos \alpha_n\right]$$

$$= \frac{1}{2} \left[1 - \frac{1}{\alpha_n} \left(-\alpha_n \cos^2 \alpha_n\right)\right] = \frac{1}{2} \left(1 + \cos^2 \alpha_n\right).$$

8. (a) The roots of the auxiliary equation $m^2+m+\lambda=0$ are $\frac{1}{2}(-1\pm\sqrt{1-4\lambda})$. When $\lambda=0$ the general solution of the differential equation is $c_1+c_2e^{-x}$. The boundary conditions imply $c_1+c_2=0$ and $c_1+c_2e^{-2}=0$. Since the determinant of the coefficients is not 0, the only solution of this homogeneous system is $c_1=c_2=0$, in which case y=0. When $\lambda=\frac{1}{4}$, the general solution of the differential equation is $c_1e^{-x/2}+c_2xe^{-x/2}$. The boundary conditions imply $c_1=0$ and $c_1+2c_2=0$, so $c_1=c_2=0$ and y=0. Similarly, if $0<\lambda<\frac{1}{4}$, the general solution is

$$y = c_1 e^{\frac{1}{2}(-1+\sqrt{1-4\lambda})x} + c_2 e^{\frac{1}{2}(-1-\sqrt{1-4\lambda})x}.$$

In this case the boundary conditions again imply $c_1 = c_2 = 0$, and so y = 0. Now, for $\lambda > \frac{1}{4}$, the general solution of the differential equation is

$$y = c_1 e^{-x/2} \cos \sqrt{4\lambda - 1} x + c_2 e^{-x/2} \sin \sqrt{4\lambda - 1} x.$$

The condition y(0) = 0 implies $c_1 = 0$ so $y = c_2 e^{-x/2} \sin \sqrt{4\lambda - 1} x$. From

$$y(2) = c_2 e^{-1} \sin 2\sqrt{4\lambda - 1} = 0$$

we see that the eigenvalues are determined by $2\sqrt{4\lambda-1}=n\pi$ for $n=1,\,2,\,3,\,\ldots$. Thus, the eigenvalues are $n^2\pi^2/4^2+1/4$ for $n=1,\,2,\,3,\,\ldots$, with corresponding eigenfunctions $e^{-x/2}\sin(n\pi x/2)$.

(b) The self-adjoint form is

$$\frac{d}{dx}[e^x y'] + \lambda e^x y = 0.$$

(c) An orthogonality relation is

$$\int_{0}^{2} e^{x} \left(e^{-x/2} \sin \frac{m\pi}{2} x \right) \left(e^{-x/2} \cos \frac{n\pi}{2} x \right) dx = \int_{0}^{2} \sin \frac{m\pi}{2} x \cos \frac{n\pi}{2} x dx = 0.$$

14. (a) An orthogonality relation is

$$\int_0^1 \cos x_m x \cos x_n x \, dx = 0$$

where $x_m \neq x_n$ are positive solutions of $\cot x = x$.

(b) Referring to Problem 1 we use a CAS to compute

$$\int_0^1 (\cos 0.8603x)(\cos 3.4256x) \, dx = -1.8771 \times 10^{-6} \approx 0.$$