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2. For A < 0 the only solution of the boundary-value problem is y = 0. For A = 0 we have y = c12 + ca. Now

y' = c1 and the boundary conditions both imply ¢; + ¢ = 0. Thus, A = 0 is an eigenvalue with corresponding

eigenfunction yp = = — 1.
For A = a? > 0 we have
i = €1 €Os ax + cosinar
and
y'(z) = —ciasin ar + coa cos az.

The boundary conditions imply
c1+cpa=0
cpcosa 4 cosina =0

which gives

—coxcosx + cosina =0 or tan o = a.
The eigenvalues are A, = a'i where ay, as, as, ... are the consecutive positive solutions of tana = «. The
corresponding eigenfunctions are acosar — sinax (obtained by taking co = —1 in the first equation of the

system.) Using a CAS we find that the first four positive eigenvalues are 20.1907, 59.6795, 118.9000, and
197.858 with corresponding eigenfunctions 4.4934 cos 4.4934z — sin 4.49342, 7.7253 cos 7.7253z — sin 7.7253z,
10.9041 cos 10.9041x — sin 10.9041z, and 14.0662 cos 14.0662z — sin 14.0662z.




4. For A = —a? < 0 we have
Yy = ¢y cosh ax + e sinh ar

y" = eyasinh ar + eqa cosh e,
Using the fact that coshz is an even function and sinh z is odd we have
y(—L) = ¢1 cosh(—al) + egsinh(—alL)
= ¢y coshall — egsinhall
and
¥'(—L) = cyasinh(—al) + coo cosh(—al)

= —eacsinh ol + e cosh al.
The boundary conditions imply

ry coshal, — e sinh el = ¢y cosh all + co sinh al

or
2cosinhal =0
and
—cyasinh al + conveoshal = cqasinh ol + coacosha l
or

2eyasinh ol = 0.

Since ol # 0, ¢ = ¢ = 0 and the only solution of the boundary-value problem in this case is y = 0.
For A = 0 we have
Y =012 + g
¥ =cr.
From y(—L) = y(L) we obtain
—C]_L + g = C]_L + €.
Then ¢y = 0 and y = 1 i an eigenfunction corresponding to the eigenvalue A = 0.
For A = a? = 0 we have
Y = ¢y cosar 4 co Sinax
)

Yy = —qpasinar + cpacos ax.

The first boundary condition implies
crcosal —eosinal = ¢ cosal + cosinal

or

2eq sinal = 0.




Thus, if ¢1 = 0 and e £ 0,

5 mim? ]
al=nm or A=a"= , n=1,2,3,....
.2
The corresponding eigenfunctions are sin{nwa /L), forn =1, 2, 3, ... . Similarly, the second boundary condition
implies
Zeyasinal = 0.
If ¢4 #£ 0 and o = 0,
2.2
neT
aL=nr or A=a’= 72 n=123,...,

and the corresponding eigenfunctions are cos(nmz /L), for n =1, 2,3, ... .

6. The eigenfunctions are sin a,r where tano, = —a,,. Thus

1 S|
1 .
|| sin etz || = f sin? a,x dr = E[ (1 —cos2a,7) dr
0 0
1
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T — sin2a,x =—|1- L sin 2ar,
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8. (a) The roots of the anxiliary equation m?+m+A = 0 are %[— 1£+/1 —4A ). When A = 0 the general solution of
the differential equation is ¢y +coe~*. The houndary conditions imply ¢1 4+ co = 0 and e +eze~2 = 0. Since
the determinant of the coefficients is not 0, the only solution of this homogeneous system is ¢ = 2 = 0,

—z /2 —.1:;’2.

in which case ¥y = 0. When A = % . the general solution of the differential equation is cie + coxe

The boundary conditions imply ¢y = 0 and ¢y + 22 = 0,80 ¢ = ¢ = 0 and y = 0. Similarly, if 0 < X < % ,

the general solution is
i Iz i Py
y = cpe3(—1HVI=)z 4 g o3 (—1-VI—aR)s

In this case the boundary conditions again imply ¢ = ¢ = 0, and so ¥ = 0. Now, for A > % , the general
solution of the differential equation is

Y= cle‘xﬁ cosvdA—1x+ cze“fz sinv4A — 1.
The condition »(0) = 0 implies ¢; = 0 80 ¥y = c2e~*/?sin/4\ — 1 2. From

Y(2) = ;2 tsin2vAA —1=0

we see that the eigenvalues are determined by 244\ — 1 =nm forn = 1, 2, 3, ... . Thus, the sigenvalues
are n?r2/42 + 1/4 forn =1, 2, 3, ..., with corresponding eigenfunctions e—o/2 sin(nmr/2).

(b) The self-adjoint form is

a" g e
E[E Y]+ Aey = 0.

(c) An orthogonality relation is

2 2 :
f e* (e“fﬁ sin Em) (e—‘fz cos E.':t.') dr = f T
. 2 2 . T 2

14. (a) An orthogonality relation is
1
f cos T, reosr o dr =0
0

where ,,, # &, are positive solutions of cotx = .

(b) Referring to Problem 1 we use a CAS to compute

1
/ (cos0.86032 )(cos 3.4256x) dr = —1.8771 x 107°% = 0.
o




