SECTION 4.3

- **4.3.1** Find f'(x) if $f(x) = x^2 \sqrt{x^2 + a^2}$, a = constant.
- **4.3.2** Find f'(x) if $f(x) = (2 + \cos 2x)^{1/2}$.
- **4.3.3** Find $\frac{dy}{dx}$ if $y = (x+4)^{1/4}(3x+2)^{1/3}$.
- **4.3.4** Find $\frac{dy}{dx}$ if $y = (2x+4)^4(3x-2)^{7/3}$.
- **4.3.5** Find $\frac{dy}{dx}$ if $y = \left(\frac{a^2 x^2}{a^2 + x^2}\right)^{2/3}$; a = constant.
- **4.3.6** Find $\frac{dy}{dx}$ if $\sin(x+y) = \tan xy$.
- **4.3.7** Find $\frac{dy}{dx}$ by implicit differentiation if $xy^2 + \sqrt{xy} = 2$.
- **4.3.8** Find $\frac{dy}{dx}$ by implicit differentiation if $x \sin y = y \cos 2x$.
- **4.3.9** Find $\frac{dy}{dx}$ by implicit differentiation if $a^2x^{3/4} + b^2y^{2/3} = c^2$; a, b, c are constants.
- **4.3.10** Use implicit differentiation to find $\frac{dy}{dx}$ if $\sin^2 xy \cos xy = 1$.
- **4.3.11** Find $\frac{dy}{dx}$ by implicit differentiation if $(x-y)^2 + 4x 5y 1 = 0$.
- **4.3.12** Find $\frac{dy}{dx}$ by implicit differentiation if $x^{-1/3} + y^{-1/3} = 1$.
- **4.3.13** Use implicit differentiation to find $\frac{dy}{dx}$ if $\tan^2(x^2y) = y$.
- **4.3.14** Find $\frac{d^2y}{dx^2}$ by implicit differentiation if $x^2 + 3y^2 = 10$.
- **4.3.15** Find $\frac{d^2y}{dx^2}$ by implicit differentiation if $x^2 + 2xy y^2 + 8 = 0$.
- **4.3.16** Find the equation of the tangent and normal lines to $2x^2 3xy + 3y^2 = 2$ at (1,1).
- **4.3.17** Use implicit differentiation to find the equations of the tangent and normal lines to the ellipse $3x^2 + y^2 = 4$ at (1,1).
- **4.3.18** Use implicit differentiation to find the equations of the tangent and normal lines to the hyperbola $5x^2 y^2 = 4$ at (1,1).
- **4.3.19** Use implicit differentiation to show that for any constants a and b, the hyperbolas xy = a and $x^2 y^2 = b$ intersect at right angles at the point (x_0, y_0) .