CHAPTER 4

Logarithmic and Exponential Functions

SECTION 4.1

- **4.1.1** Find $f^{-1}(x)$ if $f(x) = 4 + x^3$.
- **4.1.2** Determine whether or not $f(x) = (x-1)^2$ is a one to one function on [2,4].
- **4.1.3** Determine whether or not f(x) = 2x + 3 is a one to one function and if so, find $f^{-1}(x)$.
- **4.1.4** Determine whether or not $g(x) = \sqrt{2x+1}$ is a one to one function and if so, find $g^{-1}(x)$ and specify its domain.
- **4.1.5** Show that $f(x) = x^2 + 4x + 9$ is not a one to one function. Modify the domain of f so that it will be a one to one function.
- **4.1.6** Show that $f(x) = \sqrt{4 x^2}$ is not a one to one function. Modify the domain of f so that it will be a one to one function.
- **4.1.7** Find $f^{-1}(x)$ if $f(x) = \frac{1}{x^3 + 1}$ for $x \ge 0$ and specify the domain of f^{-1} .
- **4.1.8** Find $f^{-1}(-1)$ if $f(x) = -2x^5 + \frac{7}{8}$.
- 4.1.9 (a) Show that $f(x) = \frac{2x+3}{4x-2}$ is its own inverse.
 - (b) What does the result in (a) tell you about the graph of f?
- **4.1.10** (a) Show that $g(x) = \frac{x-5}{2x-1}$ is its own inverse.
 - (b) What does the result in (a) tell you about the graph of g?
- **4.1.11** Find $f^{-1}(x)$ if $f(x) = \sqrt[3]{2x+9}$.
- **4.1.12** Determine whether or not $f(x) = 2x^5 + x^3 + 7x 5$ is a one to one function.
- **4.1.13** (a) Show that $f(x) = x^3 5x^2 + 6x + 1$ is not one to one on $(-\infty, +\infty)$.
 - (b) Find the largest value of k such that f is one to one on the interval (-k, k).
- **4.1.14** Find $g^{-1}(4)$ if g(x) = 2x + 3.
- **4.1.15** Find $f^{-1}(x)$ if $f(x) = 2\sqrt{x-1}$ and specify the domain of f^{-1} .
- **4.1.16** Find $f^{-1}(x)$ if $f(x) = \frac{\sqrt{x}}{3} + 4$ and specify the domain of f^{-1} .