SECTION 3.5

3.5.1 Find
$$f'(x)$$
 where $f(x) = x^2(\sin 2x)^3$.

3.5.2 Find
$$f'(x)$$
 where $f(x) = \frac{3}{(x^2 - 2x + 2)^3}$.

3.5.3 Find
$$f'(x)$$
 where $f(x) = \sin(\tan 2x)$.

3.5.4 Find
$$f'(\theta)$$
 where $f(\theta) = (\theta + \sin 2\theta)^2$

3.5.5 Find
$$f'(\theta)$$
 where $f(\theta) = \sin^2(2\theta^2 - \theta)^3$.

3.5.6 Find
$$f'(\frac{\pi}{12})$$
 where $f(x) = \cos^3 2x$.

3.5.7 Find
$$f'\left(\frac{\pi}{8}\right)$$
 where $f(x) = \sin^2 2x$.

3.5.8 Find
$$f'(x)$$
 where $f(x) = \csc^3 4x$.

3.5.9 Find
$$f'(x)$$
 where $f(x) = \sec^2(3x - x^2)$.

3.5.10 Find
$$f'(x)$$
 where $f(x) = (x^2 - 3)^3(x^2 + 1)^2$.

3.5.11 Find
$$\frac{dy}{dx}$$
 where $y = (x+4)^4 (3x+2)^3$.

3.5.12 Find
$$\frac{dy}{dx}$$
 where $y = \left(\frac{x+1}{x-1}\right)^2$.

3.5.13 Find
$$y'(\pi)$$
 where $y = \left(\frac{1}{x} + \sin x\right)^{-1}$.

3.5.14 Find
$$f'(t)$$
 where $f(t) = \left(\frac{1}{t} + \frac{1}{t^2}\right)^4$.

3.5.15 Find equations for the tangent and normal lines to the graph of
$$f(x) = \sin(4-x^2)$$
 at $x = 2$.

3.5.16 Find equations for the tangent and normal lines to the graph of
$$f(x) = x \cos 4x$$
 at $x = \pi/4$.

3.5.17 Find
$$f'(x)$$
 where $f(x) = (x^4 + 3x)^{52}$

3.5.18 Find
$$f'(x)$$
 where $f(x) = \sqrt{x^5 + 2x + 3}$

3.5.19 Find
$$\frac{d}{dx} \left[x^2 y^3 - \frac{x}{y^2} \right]$$
 in terms of x , y and $\frac{dy}{dx}$ assuming that y is a differentiable function of x .

3.5.20 Find
$$\frac{d}{dx} \left[\sin \sqrt{x^2 + y^2} \right]$$
 in terms of x , y and $\frac{dy}{dx}$ assuming that y is a differentiable function of x .

3.5.21 Find
$$\frac{d}{dt} \left[\tan(x^2 \sqrt{y}) \right]$$
 in terms of x , y , $\frac{dx}{dt}$ and $\frac{dy}{dt}$ assuming x and y are differentiable functions of t .

3.5.22 Given that
$$f(1) = 2$$
, $f'(1) = 4$ and $g(x) = (f(x))^{-3}$, find $g'(1)$.

3.5.23 Find
$$(f \circ g)'(0)$$
 if $f'(0) = 4$, $g(0) = 0$ and $g'(0) = 2$.