SECTION 3.3

3.3.1 Find
$$\frac{dy}{dx}$$
 if $y = \frac{3x^3 + 5x^2 + \sqrt{x}}{x}$.

3.3.2 Find $\frac{dy}{dx}$ if $y = \frac{x^2 + 3x}{7 - 2x}$.

3.3.3 Find
$$f''(2)$$
 if $f(x) = \frac{-8}{x^2} + \frac{1}{5}x^5$. **3.3.4** Find $\frac{dy}{dx}$ if $y = -2(x^2 - 5x)(3 + x^7)$.

3.3.5 Find
$$f'(s)$$
 if $f(s) = (3s^2 + 4)(s^2 - 9s)$.

3.3.6 Find
$$f'(x)$$
 if $f(x) = \frac{2x+1}{x^2+3x}$.

3.3.7 If
$$f(3) = 2$$
, $f'(3) = -1$, $g(3) = 3$, $g'(3) = 0$, find $F'(3)$

(a)
$$F(x) = 2f(x) - g(x)$$

(b)
$$F(x) = \frac{1}{2}f(x)g(x)$$

(c)
$$F(x) = \frac{1}{3} \frac{f(x)}{g(x)}$$

3.3.8 Find
$$\frac{d^2y}{dt^2}$$
 if $y = -\frac{1}{t} - \frac{5}{t^2}$.

3.3.9 Find $f'(u)$ is $f(u) = \frac{u^2 - 5}{3u^2 - 1}$.

3.3.10 Find
$$\frac{dy}{dx}$$
 if $y = (x^2 - 2)(x^3 + 5x)$.

3.3.11 Find
$$\frac{dv}{dh}$$
 if $v = \pi \left(ah^2 - \frac{1}{3}h^3\right)$, a is a constant.

3.3.12 Find
$$f'(x)$$
 if $f(x) = (x^2 + 1)(x^3 - 2x^2 + x)$.

- **3.3.13** Find equations for the tangents and normals to the graph of $y = 4 3x x^2$ at those points where the curve intersects the x-axis.
- 3.3.14 Find equations for the tangents and normals to the graph of $y = 6 x x^2$ at the points where the curve intersects the x-axis.
- **3.3.15** Find the points on the graph of $y = 2x^3 3x^2 12x + 20$ at which the tangent is parallel to the x-axis.
- 3.3.16 Show that the parabola $y = -x^2$ and the line x 4y 18 = 0 intersect at right angles at one of their points of intersection.

3.3.17 Find the equation of the tangents and normals to the graph of
$$y = \frac{x+1}{x-1}$$
 at $x = 2$.

- **3.3.18** Find the equation of the tangent and normal to the graph of $y = 10 3x x^2$ at the point where the curve intersects the x-axis.
- 3.3.19 Show that the parabola $y = x^2$ and the line x + 2y 3 = 0 intersect at right angles at one of their points of intersection.