CHAPTER 3

The Derivative

SECTION 3.1

- 3.1.1 Let $f(x) = \frac{1}{x^2}$;
 - (a) Find the average rate of change of y with respect to x over the interval [2,3].
 - (b) Find the instantaneous rate of change of y with respect to x at the point x = 2.
 - (c) Find the instantaneous rate of change of y with respect to x at a general point x_0 .
 - (d) Sketch the graph of y = f(x) together with the secant and tangent lines whose slopes are given by the results in parts (a) and (b).
- **3.1.2** Let $f(x) = x^2 + 1$.
 - (a) Find the average rate of change of y with respect to x over the interval [-2, -1].
 - (b) Find the instantaneous rate of change of y with respect to x at the point x = -2.
 - (c) Find the instantaneous rate of change of y with respect to x at a general point x_0 .
 - (d) Sketch the graph of y = f(x) together with the secant and tangent lines whose slopes are given by the results in parts (a) and (b).
- 3.1.3 Let $f(x) = \frac{1}{x-2}$.
 - (a) Find the average rate of change of y with respect to x over the interval [3,5].
 - (b) Find the instantaneous rate of change of y with respect to x at the point x = 3.
 - (c) Find the instantaneous rate of change of y with respect to x at a general point x.
 - (d) Sketch the graph of y = f(x) together with the secant and tangent lines whose slopes are given by the results in parts (a) and (b).
- **3.1.4** Let $f(x) = \frac{1}{x+1}$.
 - (a) Find the average rate of change of y with respect to x over the given interval [1,3].
 - (b) Find the instantaneous rate of change of y with respect to x at the point x = 1.
 - (c) Find the instantaneous rate of change of y with respect to x at the general point x_0 .
 - (d) Sketch the graph of y = f(x) together with the secant and tangent lines whose slopes are given by the results in parts (a) and (b).
- 3.1.5 Let $f(x) = \frac{2}{3-x}$.
 - (a) Find the slope of the tangent to the graph of f at a general point x_0 using the method of Section 3.1
 - (b) Use the result in part (a) to find the slope of the tangent at $x_0 = 1$.

- 3.1.6 Let $f(x) = \frac{3}{x-1}$.
 - (a) Find the slope of the tangent to the graph of f at a general point x_0 using the method of Section 3.1.
 - (b) Use the result in part (a) to find the slope of the tangent at $x_0 = 4$.
- 3.1.7 Let $f(x) = \frac{1}{x^2}$
 - (a) Find the slope of the tangent to the graph of f at a general point x_0 using the method of section 3.1
 - (b) Use the result in part (a) to find the slope of the tangent at $x_0 = -2$.
- **3.1.8** Let $f(x) = 3x^2$.
 - (a) Find the slope of the tangent to the graph of f at a general point x_0 using the method of section 3.1.
 - (b) Use the result in part (a) to find the slope of the tangent at x = 3.
- **3.1.9** A rock is dropped from a height of 144 feet and falls toward the earth in a straight line. In t seconds, the rock drops a distance of $s = 16t^2$ feet.
 - (a) What is the average velocity of the rock while it is falling?
 - (b) Use the method of 3.1 to find the instantaneous velocity of the rock when it hits the ground.
- **3.1.10** A rock is dropped from a height of 64 feet and falls toward the earth in a straight line. In t seconds, the rock drops a distance of $s = 16t^2$ feet.
 - (a) What is the average velocity of the rock while it is falling?
 - (b) Use the method of Section 3.1 to find the instantaneous velocity of the rock when it hits the ground.
- **3.1.11** A particle moves in a straight line from its initial position so that after t seconds, its distance is given by $s = t^2 + t$ feet from its initial position.
 - (a) Find the average velocity of the particle over the interval [1,3] seconds.
 - (b) Use the method of Section 3.1 to find the instantaneous velocity of the particle at t=1 second.
- **3.1.12** A particle moves in a straight line from its initial position so that after t seconds, its distance is given by $s = \frac{t}{t+2}$ feet from its initial position.
 - (a) Find the average velocity of the particle over the interval [2,3] seconds.
 - (b) Use the method of Section 3.1 to find the instantaneous velocity of the particle at t=2 seconds.
- 3.1.13 Let $f(x) = x^2$.

Use the method of Section 3.1 to show that the slope of the tangent to the graph of f at $x = x_0$ is $2x_0$.

- 3.1.14 Let $f(x) = ax^2 + b$, where a and b are constants. Use the method of Section 3.1 to show that the slope of the tangent to the graph of f at $x = x_0$ is $2ax_0$.
- 3.1.15 Let $f(x) = ax^3 + b$, where a and b are constants. Use the method of Section 3.1 to show that the slope of the tangent to the graph of f at $x = x_0$ is $3ax_0^2$.
- 3.1.16 A particle moves in a straight line from its initial position so that after t seconds, its distance is given by $s = 16t^2$ feet. Use the method of Section 3.1 to show that the instantaneous velocity of the particle at $t = t_0$ seconds is $32t_0$.

- 3.1.17 A particle moves in a straight line from its initial position so that after t seconds, its distance is given by $s = 4 - 16t^2$ feet. Use the method of Section 3.1 to show that the instantaneous velocity of the particle at $t = t_0$ seconds is $v = -32t_0$.
- The figure shows the position versus time curves of four different particles moving on a straight line. For each particle, determine if its instantaneous velocity is increasing or decreasing with time.

(c)

(d)

- The figure shows the position versus time curve for a certain particle moving along a straight line. 3.1.19Estimate each of the following from the graph.
 - The average velocity over the interval $0 \le t \le 4.6$ (a)
 - The values of t at which the instantaneous velocity is zero
 - The values of t at which the instantaneous velocity is maximum; minimum (c)
 - The instantaneous velocity when t = 5 seconds (d)

