King Fahd University of Petroleum and Minerals Department of Mathematical Sciences Math 102

Dr. Faisal Fairag
Second Major Exam
Semester I, 2001–2002 (011)

Name:			ID #:	
Section #:	7 (9:00 – 9:50),	11 (10:00 – 10:5)	(please circle one)	
Serial #:				

Problem #	Points
1	16
2	16
3	16
4	16
5	16
6	16
7	25
8	25
9	25
10	29
Total:	200

- 1. If $g(x) = \sqrt{x}f(x)$, f(1) = 8 and f'(1) = 5 then g'(1) =
 - (a) 5
 - (b) 4
 - (c) 9
 - (d) 13
 - (e) 40

- 2. Let $y = \exp(\sqrt{1 + 5x^3})$ then y''(0) y'(0) =
 - (a) e
 - (b) 0
 - (c) -e
 - (d) 2e
 - (e) -2e

- 3. Let $f(x) = 5x \sin 2x$ and $g(x) = f^{-1}(x)$ then $g'(\pi) = f^{-1}(x)$
 - (a) $\frac{1}{7}$
 - (b) $\frac{1}{5}$
 - (c) 3
 - (d) $\frac{1}{3}$
 - (e) 5

- 4. When a spherical ball of metal is heated, the radius of the sphere increases by 0.1% per degree increase in temperature. Use differential to estimate the percentage increase in the volume of the ball per degree increase in temperature. $(V = \frac{4}{3}\pi r^3)$ The estimate is:
 - (a) 1.2%
 - (b) 0.3%
 - (c) 0.6%
 - (d) 2.4%
 - (e) 0.1%

- 5. The slope of the tangent line to the curve $y = \sin^{-1}(\tan x) + \tan^{-1}(1 + \ln(x+1))$ at the point x = 0 equals
 - (a) $\frac{3}{2}$
 - (b) $\frac{1}{2}$
 - (c) 0
 - (d) $\frac{2}{3}$
 - (e) 1

- 6. Use a differential to approximate $(1.986)^4$
 - (a) 15.4880
 - (b) 15.5567
 - (c) 15.5520
 - (d) 15.4880
 - (e) 15.3600

7. Let $x \cos y = y - \frac{\pi}{2}$. Find y''(0).

8. Find $\lim_{h\to 0} (1-3h)^{\frac{2}{h}}$

9. Let $h(x) = \frac{f(g(x))}{g(x)}$. Find h''(2). Given that:

$$f(2) = 2,$$
 $f'(2) = f''(2) = -1$
 $g(2) = 2,$ $g'(2) = g''(2) = -1$

10. Let F(x) = f(2g(x)) where $f(x) = x^4 + x^3 + 1$ for $0 \le x \le 2$ and $g(x) = f^{-1}(x)$. Find F''(3).