SECTION 6.4

- **6.4.1** Approximate $\sqrt{3}$ by applying Newton's Method to the equation $x^2 3 = 0$.
- **6.4.2** Approximate $\sqrt{11}$ by applying Newton's Method to the equation $x^2 11 = 0$.
- **6.4.3** Approximate $\sqrt{84}$ by applying Newton's Method to the equation $x^2 84 = 0$.
- **6.4.4** Approximate $\sqrt{66}$ by applying Newton's Method to the equation $x^2 66 = 0$.
- **6.4.5** Approximate $\sqrt{97}$ by applying Newton's Method to the equation $x^2 97 = 0$.
- **6.4.6** Approximate $\sqrt[3]{10}$ by applying Newton's Method to the equation $x^3 10 = 0$.
- **6.4.7** Approximate $\sqrt[3]{25}$ by applying Newton's Method to the equation $x^3 25 = 0$.
- **6.4.8** Approximate $-\sqrt[3]{72}$ by applying Newton's Method to the equation $x^3 + 72 = 0$.
- **6.4.9** Approximate $\sqrt[4]{36}$ by applying Newton's Method to the equation $x^4 36 = 0$.
- **6.4.10** Approximate $-\sqrt[5]{34}$ by applying Newton's Method to the equation $x^5 + 34 = 0$.
- **6.4.11** The equation, $x^3 x 2 = 0$ has one real solution for 1 < x < 2. Approximate it by Newton's Method.
- **6.4.12** The equation, $x^3 3x + 1 = 0$ has one real solution for 0 < x < 1. Approximate it by Newton's Method.
- **6.4.13** The equation, $x^3 + x^2 3x 3 = 0$ has one real solution for x > 1. Approximate it by Newton's Method.
- **6.4.14** The equation, $x^3 + x^2 3x 3 = 0$ has one real solution for -2 < x < -1. Approximate it by Newton's Method.
- **6.4.15** The equation, $x^3 x^2 2x + 1 = 0$ has one real solution for 1 < x < 2. Approximate it by Newton's Method.
- 6.4.16 The equation, $\sin x = x/3$ has one real solution for $\frac{\pi}{2} < x < \pi$. Approximate it by Newton's Method.