SECTION 5.2

- Find the relative extrema for $f(x) = 3x^5 5x^4$.
- Find the relative extrema for $f(x) = 12x^{2/3} 16x$
- Find the relative extrema for $f(x) = x^{2/3}(5-x)$.
- Find the relative extrema for $f(x) = \frac{2}{\kappa}x^{5/3} + 8x^{2/3}$.
- Find the relative extrema for $f(x) = \frac{1}{3}x^{4/3} \frac{4}{3}x^{1/3}$.
- Find the relative extrema for $f(x) = \frac{x^4}{4} 2x^2 + 1$. 5.2.6
- 5.2.7The derivative of a continuous function is $f'(x) = 2(x-1)^2(2x+1)$. Find all critical points and determine whether a relative maximum, relative minimum or neither occurs there.
- The derivative of a continuous function is $f'(x) = \frac{2}{3}x^{\frac{1}{3}} \frac{2}{3}x^{-\frac{2}{3}}$. Find all critical points and determine whether a relative maximum, relative minimum or neither occurs there.
- Find the relative extrema for $f(x) = 2x + 2x^{2/3}$.
- Find the relative extrema for $f(x) = \frac{1}{x} \frac{1}{3x^3}$.
- **5.2.11** Find the relative extrema for $f(x) = x^{4/3} 4x^{-1/3}$.
- **5.2.12** Find the relative extrema for $f(x) = 6x^2 9x + 5$.
- **5.2.13** Find the relative extrema for $f(x) = x^4 6x^2 + 17$.
- **5.2.14** Find the relative extrema for $f(x) = (x+1)^{-\frac{1}{3}}$.
- Find the relative extrema for $f(x) = x + \cos 2x$, $0 < x < \pi$.
- **5.2.16** Find the relative extrema for $f(x) = x \sin 2x$, $0 < x < \pi$.
- **5.2.17** Which of the following statements is correct if $f'(x_0) = 0$ and $f''(x_0) = 0$:
 - (a) x_0 is a local minimum

- (c) x_0 is a point of inflection
- (b) x₀ is a local maximum(d) Any one of (a), (b), (c) may happen.
- **5.2.18** Which of the following statements about the graph of $f(x) = 2x^4 + x + 1$ is correct:
 - There is a relative minimum at $x = -\frac{1}{2}$ and a point of inflection at x = 0.
 - There is a relative maximum at $x = -\frac{1}{2}$ and a point of inflection at x = 0.
 - There are no relative extrema, but there is a point of inflection at x = 0.
 - There is a relative minimum at $x=-\frac{1}{2}$, but there is no point of inflection.
 - There are no local extrema and no points of inflection.

- **5.2.19** Which of the following statements about the graph of $g(x) = (x^2 1)^3$ is correct:
 - (a) There are three relative minima and two points of inflection.
 - (b) There are two relative minima and three points of inflection.
 - (c) There is one local minimum and four points of inflection.
 - (d) There are no local minima and five points of inflection.
 - (e) There are two relative minima and two points of inflection.