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A collection of results are presented which are loosely centered around the notion of
reflective subcategory. For example, it is shown that reflective subcategories are orthogo-
nality classes, that the morphisms orthogonal to a reflective subcategory are precisely the
morphisms inverted under the reflector, and that each subcategory has a largest “enve-
lope” in the ambient category in which it is reflective. Moreover, known results concern-
ing the envelopes of the category of sober spaces, spectral spaces, and jacspectral spaces,
respectively, are summarized and reproved. Finally, attention is focused on the envelopes
of one-object subcategories, and examples are considered in the category of groups.

1. Introduction

Reflective subcategories arise throughout mathematics, via several examples such as the
free group, free ring, functors in algebra, various compactification functors in topology,
and completion functors in analysis, and so forth (cf. [25, page 90]). Recall from [25, page
89] that a subcategory D of a category C is called reflective (in C) if the inclusion functor
I : D→ C has a left adjoint functor F : C→D; that is, if for each object A of C, there exist
an object F(A) of D and a morphism µA : A→ F(A) in C such that for each object X in D

and each morphism f : A→ X in C, there exists a unique morphism f̃ : F(A)→ X in D

such that f̃ ◦µA = f .
Note that all subcategories considered in this paper are assumed to be full and

isomorphism-closed.
The concept of reflections in categories has been investigated by several authors (see,

e.g., [4, 5, 6, 7, 8, 9, 13, 14, 17, 18, 19, 20, 24, 29, 30, 31]). This concept serves the purpose
of unifying various constructions in mathematics.

Historically, the concept of reflections in categories seems to have its origin in the
universal extension property of the Stone-Čech compactification of a completely regular
T2-space.

Notice that all nonexplained notions are standard as in [25].
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A morphism f : A→ B and an object X in a category C are called orthogonal [15] if the
mapping homC( f ,X) : homC(B,X)→ homC(A,X) which takes g to g f is bijective. For a
class of morphisms Σ (resp., a class of objects D), we denote by Σ⊥ the class of objects
orthogonal to every f in Σ (resp., denote by D⊥ the class of morphisms orthogonal to all
X in D) [15].

Over the years, reflective subcategories have been studied extensively. It is worth noting
that in a remarkable paper [6], Cassidy et al. have given an important study of reflective
subcategories.

The present paper is a contribution to the study of reflective subcategories.
We state the following three natural questions. Let D be a reflective subcategory in C.

Question 1.1. For two objects A, B of C, characterize the set hom(A,B)∩D⊥.

The following question is credited to [15].

Question 1.2. Is D⊥⊥ =D?

Let C be a category and D a subcategory of C closed under isomorphisms. It is eas-
ily seen that there is a largest full subcategory of C (the envelope of D) in which D is a
reflective subcategory.

Question 1.3. How envelopes of various categories can be described in concrete cases?

Note that in [19], Herrlich has considered the envelope question in some generality.
Question 1.1 has been answered by Casacuberta et al. in [5].
The second section of this paper is devoted to collect some information about Ques-

tions 1.1 and 1.2.
The third section deals with an example of orthogonal class of morphisms.
The fourth, fifth, and sixth sections deal with Question 1.3. Note that this question has

been tackled long ago (in the setting of HAUS, where HAUS is the category of Hausdorff

spaces with continuous maps as morphisms) by Porter in [28].
The last two sections treat Question 1.3 in the particular case when D is the subcat-

egory of C whose objects are those isomorphic to a given object X . Particular study of
Question 1.3 is given in the category of groups.

2. Reflective subcategories and orthogonality

Let us first fix some notations which will be used throughout this section. The symbol
C will always denote a category, D will denote a full reflective subcategory of C which is
isomorphism-closed. We also denote by F a left adjoint functor of the inclusion functor
I : D→ C and µ the unit of the adjunction (for precise definitions, see [25]).

Let θ1 : A→ B, θ2 : B→ C be two morphisms of C and θ3 = θ2 ◦ θ1. Since homC(−,X)
is a contravariant functor, then

homC
(
θ3,X

)= homC
(
θ1,X

)◦homC
(
θ2,X

)
. (2.1)
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Thus, if two of the three maps homC(θ1,X), homC(θ2,X), homC(θ3,X) are bijective, then
so is the third one. This leads to the following proposition.

Proposition 2.1 (never two without three). Let A
θ1→ B

θ2→ C be two morphisms in C and
θ3 = θ2 ◦ θ1. If two of the morphisms θ1, θ2, and θ3 are in D⊥, then so is the third one.

Proposition 2.2. For each object A in C, the following statements are equivalent:
(i) A is in D;

(ii) µA : A→ F(A) is an isomorphism.

The following result is an easy observation from [6].

Proposition 2.3. Let f : A→ B be a morphism in C. Then the following statements are
equivalent:

(i) f ∈D⊥;
(ii) F( f ) : F(A)→ F(B) is an isomorphism;

(iii) F( f )∈D⊥.

Let F : C → C′ be a functor. The class of morphisms of C rendered invertible by F
is sometimes denoted by ΣF [6] or �(F) [4]. Hence, Proposition 2.2 says exactly that
D⊥ =�(F).

Using Propositions 2.2 and 2.3, one may check easily the following.

Proposition 2.4. Let f : A→ B be in D⊥. Then the following properties hold.
(1) If A is an object of D, then f has a retraction g : B→ A which is in D⊥ (in particular,

f is a monomorphism).
(2) If A and B are objects in D, then f is an isomorphism.

Remark 2.5. It is possible to have an arrow f : A→ B in D⊥ such that B is in D, but f has
neither section nor retraction (see Example 3.4).

An affirmative answer to Question 1.2 is already in [19]; this yields the following.

Proposition 2.6. D⊥⊥ =D.

Proof. Clearly, D is contained in D⊥⊥.
Conversely, let C be an object of C lying in D⊥⊥. Since µC is in D⊥, there exists a unique

morphism g : F(C)→ C such that the diagram

C

1C

µC
F(C)

g�

C

(2.2)

is commutative.
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Thus, the diagram

C
µC

µC

F(C)

µC◦g�

F(C)

(2.3)

commutes.
Since, in addition, µC ∈ D⊥, we get µC ◦ g = 1F(C). Therefore, µC is an isomorphism,

and consequently C is a D-object by Proposition 2.2. �

Proposition 2.7. Let D1 and D2 be two full reflective isomorphism-closed subcategories of
a category C. For i∈ {1,2}, denote by Fi a left adjoint functor of the inclusion functor from
Di into C.

Then the following statements are equivalent:
(i) D1 =D2;

(ii) F1 and F2 are naturally isomorphic;
(iii) for each objects A, B in C, homC(A,B)∩D1

⊥ = homC(A,B)∩D2
⊥.

Proof. (i)⇒(ii). It is well known that any two left adjoint functors for a given functor are
naturally isomorphic [25].

(ii)⇒(iii). Let η be a natural isomorphism from F1 to F2 and f : A→ B a morphism in
C. Hence, the diagram

F1(A)
ηA

F1( f )

F2(A)

F2( f )�

F1(B)
ηB

F2(B)

(2.4)

commutes. On the other hand, ηA and ηB are isomorphisms, and it follows that F1( f ) is
an isomorphism if and only if so is F2( f ). Therefore, homC(A,B)∩D1

⊥ = homC(A,B)∩
D2

⊥, for each objects A, B in C by Proposition 2.3.
(iii)⇒(i). The proof follows immediately from Proposition 2.6. �

The following result gives more information about reflective subcategories.

Proposition 2.8. Let D be a subcategory of a category C and F : C→D a covariant functor.
Then the following statements are equivalent:

(1) F is a left adjoint functor of the inclusion functor I : D→ C;
(2) there exists a natural transformation µ : 1C → I◦F such that the following properties
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hold:
(i) for each object A in C, F(µA) is an isomorphism,

(ii) for each object A in D, µA is an isomorphism.

Proof. (1)⇒(2). Statement (1) is equivalent to D being a reflective subcategory of C. Now,
since µA is in D⊥, we conclude that F(µA) is an isomorphism, by Proposition 2.3.

If A is in D, then, according to Proposition 2.2, µA is an isomorphism.
(2)⇒(1). We are aiming to prove that (F(A),µA) is a universal to the inclusion functor

I : D→ C from A.
Let C be an object of D and f : A→ C a morphism in C. We must prove that there is a

unique morphism f̃ : F(A)→ C such that f̃ ◦µA = f .

Suppose that such a morphism f̃ exists. Then we have F( f̃ ) ◦ F(µA) = F( f ). Thus

F( f̃ )= F( f )◦ (F(µA))−1.
On the other hand, the diagram

F(A)
f̃

µF(A)

C

µC�

F
(

F(A)
) F( f̃ )

F(C)

(2.5)

commutes. Consequently,

f̃ = (µC
)−1 ◦F( f̃ )◦µF(A) =

(
µC
)−1 ◦F( f )◦ (F

(
µA
))−1 ◦µF(A). (2.6)

This implies the uniqueness of f̃ , if it exists. Now, it suffices to verify that f̃ = (µC)−1 ◦
F( f )◦ (F(µA))−1 ◦µF(A) does the job. Indeed, the following diagrams

C

µC

A
f µA

µA

F(A)

µF(A)� �

F(C) F(A)
F( f ) F(µA)

F
(

F(A)
)

(2.7)

are commutative. Hence,

f̃ ◦µA =
(
µC
)−1 ◦F( f )◦ (F

(
µA
))−1 ◦µF(A) ◦µA

= (µC
)−1 ◦F( f )◦ (F

(
µA
))−1 ◦F

(
µA
)◦µA

= (µC
)−1 ◦F( f )◦µA =

(
µC
)−1 ◦µC ◦ f = f .

(2.8)

�
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3. An example of orthogonality class of morphisms

Let X be a topological space, we denote by O(X) the set of all open subsets of X . Recall
that a continuous map g : Y → Z is said to be a quasihomeomorphism if U �→ g−1(U)
defines a bijection O(Z)→O(Y).

Recall that a subset of a topological space X is said to be locally closed if it is the in-
tersection of an open subset and a closed subset of X . A subset S of a topological space
X is said to be strongly dense in X if S meets every nonempty locally closed subset of X .
Thus, a subset S of X is strongly dense if and only if the canonical injection S↩X is a
quasihomeomorphism. It is well known that a continuous map q : X → Y is a quasihome-
omorphism if and only if the topology of X is the inverse image by q of that of Y and the
subset q(X) is strongly dense in Y [16].

The notion of quasihomeomorphism is used in algebraic geometry. It has been re-
cently shown that this notion arises naturally in the theory of some foliations associated
to closed connected manifolds (see [2, 3]). It is worth noting that quasihomeomorphisms
are also linked with sober spaces.

A subset Y of a topological space X is said to be irreducible if each nonempty open
subset of Y is dense in Y . Let C be a closed subset of X . We say that C has a generic point
if there is a ∈ C such that C = {a}. Recall that a topological space X is said to be sober
if any nonempty irreducible closed subset of X has a unique generic point. Let X be a
topological space and S(X) the set of all irreducible closed subsets of X [16]. Let U be an
open subset of X , set Ũ = {F ∈ S(X) |U ∩ F 	= ∅}, then the collection {Ũ |U ∈O(X)}
provides a topology on S(X) and the following properties hold.

(i) The map ηX : X → S(X) defined by ηX(x)= {x} is a quasihomeomorphism.
(ii) S(X) is a sober space.

(iii) The topological space S(X) is called the soberification of X , and the assignment
X → S(X) defines a functor from the category of topological spaces TOP to TOP
[16].

The soberification serves, sometime, to give topological characterization of particular
spaces (see, e.g., [11]).

We denote by SOB the full subcategory of TOP whose objects are sober spaces. It is
clear that η is a natural transformation from the functor 1TOP to the functor I ◦ S, where
I : SOB→ TOP is the inclusion functor. Let X and Y be two topological spaces, we will
denote QH(X ,Y) the set of all quasihomeomorphisms from X to Y .

It is well known that SOB is a reflective full subcategory of TOP [16]. We are aiming
to determine the orthogonality class of morphisms SOB⊥.

Notice that all the material of this section may be derived from [1, 12]; and for the sake
of completeness, we will give all the details.

First, notice that Proposition 3.1 follows from well-established results in frame (or
locale) theory. The adjunction

Ω� Σ : FRAME−→ TOP, (3.1)

where Ω is the open set functor, describes the soberification reflector by Σ ◦Ω. The
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quasihomeomorphisms are exactly those maps inverted by the reflector (see, e.g., John-
stone [23]).

Proposition 3.1. The orthogonality class SOB⊥ of TOP is the class of all quasihomeomor-
phisms.

We need a technical lemma.

Lemma 3.2. Let q : X → Y be a quasihomeomorphism. Then the following properties hold.
(1) If X is a T0-space, then q is one-to-one.
(2) If X is sober and Y is a T0-space, then q is a homeomorphism.

Proof. (1) Let x1, x2 be two points of X with q(x1) = q(x2). Suppose that x1 	= x2, then
there exists an open subset U of X such that x1 ∈ U and x2 /∈ U . Since there exists an
open subset V of Y satisfying q−1(V) = U , we get q(x1) ∈ V and q(x2) /∈ V , which is
impossible. It follows that q is one-to-one.

(2) (i) We start with the obvious observation that if S is a closed subset of Y , then S
is irreducible if and only if so is q−1(S).

(ii) Let us prove that q is surjective. For this end, let y ∈ Y , according to the above
observation, q−1({y}) is a nonempty irreducible closed subset of X . Hence,
q−1({y}) has a generic point x. Thus, we have the containments

{x} ⊆ q−1({q(x)
})⊆ q−1({y})= {x}. (3.2)

Then, q−1({q(x)})= q−1({y}). It follows, from the fact that q is a quasihomeomorphism,
that {q(x)} = {y}. Since Y is a T0-space, we get q(x)= y. This proves that q is a surjective
map, and thus q is bijective. One may easily see that bijective quasihomeomorphisms are
homeomorphisms. �

Proof of Proposition 3.1. According to Proposition 2.3, one is brought back to prove that
for each topological spaces X , Y and each continuous map q : X → Y , the following state-
ments are equivalent:

(a) q is a quasihomeomorphism;
(b) S(q) is a homeomorphism.

Remark that the diagram

X
q

ηX

Y

ηY�

S(X)
S(q)

S(Y)

(3.3)

is commutative.
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(a)⇒(b). Since ηY ◦ q = S(q) ◦ ηX is a quasihomeomorphism, the map S(q) is neces-
sarily a quasihomeomorphism. Thus, following Lemma 3.2, S(q) is a homeomorphism.

(b)⇒(a). Since ηX = ((S(q))−1 ◦ηY )◦ q and (S(q))−1 ◦ηY are quasihomeomorphisms,
it is easily seen that q is a quasihomeomorphism. �

Corollary 3.3. (1) Let Z be a topological space. Then the following conditions are equiva-
lent.

(i) Z is a sober space.
(ii) For each quasihomeomorphism g : Y → X and each continuous map f : Y → Z,

there exists one and only one continuous map F : X → Z such that F ◦ g = f .
(2) Let g : Y → X be a continuous map. Then the following conditions are equivalent:

(i) g is a quasihomeomorphism;
(ii) for each sober space Z and each continuous map f : Y → Z, there exists one and

only one continuous map F : X → Z such that F ◦ g = f .

Now, we are in a position to give an example promised in Remark 2.5.

Example 3.4. Let X be a T0-space which is not sober. Then ηX : X → S(X) is a quasihome-
omorphism which is not a homeomorphism.

The mapping ηX is in SOB⊥ and S(X) is an object of the reflective subcategory SOB of
TOP, but ηX has neither section nor retraction. Indeed, suppose that the following hold.

(i) Suppose that there exists a continuous map g : S(X) → X such that g ◦ ηX = 1X .
Then (ηX ◦ g)◦ηX = ηX . This is to say that the diagram

X
ηX

ηX

S(X)

ηX◦g�

S(X)

(3.4)

commutes.
Since S(X) is sober and ηX is orthogonal to SOB, we must have ηX ◦ g = 1S(X). It follows

that ηX is a homeomorphism, a contradiction.
(ii) Suppose that there exists a continuous map g : S(X)→ X such that ηX ◦ g = 1S(X).

Then ηX is a surjective quasihomeomorphism. Thus ηX is a bijective quasihomeomor-
phism. Hence ηX is a homeomorphism, a contradiction.

4. The envelope of a subcategory

This section is devoted to answer Question 1.3.
Let C be a category and let D be a subcategory (no longer reflective and not assumed

to be isomorphism closed).
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4.1. Definitions and remarks. Let C be a category and X an object of C. By a D-ification
of X , we mean a morphism p : X → X ′ such that X ′ is an object of D and p is orthogonal
to D. The object X is said to be D-ifiable if it has a D-ification. We denote by EnvC(D) the
full subcategory of C whose objects are the D-ifiable objects of C, this subcategory will be
called the envelope of D in C.

Remarks 4.1. (1) D is a subcategory of EnvC(D) and EnvC(D) is isomorphism-closed.
(2) D is a reflective subcategory of EnvC(D).
(3) EnvC(D) is the largest subcategory of C in which D is a reflective subcategory.
(4) EnvC(EnvC(D))= EnvC(D).
(5) If D is a subcategory of C1 and C1 is a subcategory of C, then EnvC(EnvC1 (D)) =

EnvC(D).

The following result is equivalent to Remark 4.1(5). This result facilitates verification
of the fact that some objects are D-ifiable.

Proposition 4.2. Let D be a subcategory of C1 and C1 a subcategory of C. Suppose that X ′

is a C1-ification of the object X of C. Then the following statements are equivalent:
(i) X is D-ifiable;

(ii) X ′ is D-ifiable.

Example 4.3. Let n ∈ {0,1,2,3}, TOPn denotes the full subcategory of all Tn-spaces in
TOP, with T4 = Normal, T3 = Regular. Then EnvTOPn(TOPn+1)= TOPn, and thus every
topological space is TOPn-ifiable.

4.2. Spectralifiable spaces. Let Spec(R) denote the set of prime ideals of a commutative
ring with identity R. Recall that the Zariski topology for Spec(R) is defined by letting C ⊆
Spec(R) be closed if and only if there exists an ideal a of R such that C = {p∈ Spec(R) |
p⊇ a}. The topological question of characterizing spectral spaces (i.e., topological spaces
homeomorphic to the prime spectrum of a ring equipped with the Zariski topology) was
completely answered by Hochster in [21]: a topology � on a set X is spectral if and only
if the following axioms hold.

(i) X is a sober space.
(ii) X is compact and has a basis of compact open subsets.

(iii) The family of compact open subsets of X is closed under finite intersections.
Following Hochster [21], a continuous map of spectral spaces is said to be spectral

if inverse images of compact open sets are compact. Let � be the subcategory of TOP
consisting of spectral spaces and spectral maps. Hochster has extended the notion of spec-
tral map to a larger class of spaces. Call a space semispectral if the intersection of any two
compact open subsets is compact. Call an open subset U of a topological space X inter-
section compact open, or ICO, if for every compact open set Q of X , U ∩Q is compact.
Thus, X is semispectral if and only if the compact open sets are ICO. Then a continuous
map f of semispectral spaces will be called spectral if f −1 carries ICO sets to ICO sets.
The semispectral spaces and spectral maps form a category U. It is easily seen that � is a
full subcategory of U.

In the same paper [21], Hochster has introduced the notion of spectralifiable space.
By a spectralification of a semispectral space X , we mean a spectral embedding g of X
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into a spectral space X ′ such that for every spectral space Y and spectral map f from X
to Y , there is a unique spectral map f ′ from X ′ to Y such that f = f ′ ◦ g. The space X
is said to be spectralifiable if it has a spectralification [21]. When a semispectral space is
spectralifible, we will say that it is H-spectralifiable.

A complete characterization of H-spectralifiable spaces is given by Hochster in the
following.

Theorem 4.4 (see Hochster [21]). Let X be a semispectral space. Then the following con-
ditions are equivalent:

(i) X is H-spectralifiable;
(ii) X is T0 and the ICO sets are an open basis;

(iii) X can be spectrally embedded in some spectral space.

Problem 4.5. It is clear that every H-spectralifiable space of U is �-ifiable. Is the converse
true? what are �-ifiable spaces of U?

4.3. Jacspectralifiable spaces. Recall that a topological space X is said to be a Jacobson
space if the set �(X) of all closed points of X is strongly dense in X [16]. Obviously, when

X is a topological space, Jac(X) = {x ∈ X | {x} = {x}∩�(X)} is a Jacobson space; we
call it the Jacobson subspace of X . Clearly, Jac(X) is the largest subset of X in which �(X)
is strongly dense. Hence, the canonical injection �(X)↩ Jac(X) is a quasihomeomor-
phism.

Let R be a ring, we denote by Jac(R) the Jacobson subspace of Spec(R). It is easily seen
that a prime ideal p of R is in Jac(R) if and only if p is the intersection of all maximal
ideals m of R such that p ⊆ m. A jacspectral space is defined to be a topological space
homeomorphic to the Jacobson space of Spec(R) for some ring R.

In [1], Bouacida et al. have given a nice topological characterization of jacspectral
spaces. For the sake of completeness, we will prove this result but with some changes in
the proof.

We need a lemma, its proof is obvious, and therefore it is omitted.

Lemma 4.6. Let q : X → Y be a quasihomeomorphism.
(1) If U is an open subset of Y , then the following statements are equivalent:

(i) U is compact;
(ii) q−1(U) is compact.

(2) If q is injective, then �(Y)⊆ q(�(X)).
(3) Let X be a T0-space. Then q(�(X))=�(S(X)), where q : X → S(X) is the injection

of X onto its soberification S(X).
(4) Let S be a subset of X . Then the following statements are equivalent:

(i) S is strongly dense in X ;
(ii) q(S) is strongly dense in Y .

(5) If X is a T0-space, then X is Jacobson if and only if so is S(X).

We now head towards an important result which completely characterizes jacspectral
spaces.
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Theorem 4.7. Let X be a topological space. The following statements are equivalent:
(i) X is a jacspectral space;

(ii) X is a compact Jacobson sober space.

Proof. (i)⇒(ii). Let R be a ring and X = Jac(R) = Jac(Spec(R)) the Jacobson space of
Spec(R); then X is a Jacobson space. One may check easily that Jac(R) is the soberifi-
cation of Max(R) (the set of all maximal ideals of R). Thus Jac(R) is a sober space. On
the other hand, Max(R) is compact by Hochster [21]. Moreover, the canonical injection
Max(R)↩ Jac(R) is a quasihomeomorphism. Hence X is compact by Lemma 4.6.

(ii)⇒(i). Suppose that X is a compact Jacobson sober space. We know that the canoni-
cal injection �(X) ↩ X is a quasihomeomorphism, whence �(X) is compact by
Lemma 4.6. It follows that �(X) is a compact T1-space. Therefore, there exists some ring
R such that �(X) is homeomorphic to Max(R) (see Hochster [21, Proposition 11]). Let ϕ :
�(X)→Max(R) be a homeomorphism and i : Max(R)→ Jac(R) the canonical injection;
then f = i◦ϕ : �(X)→ Jac(R) is a quasihomeomorphism. In view of Corollary 3.3, there
exists a continuous extension f̃ : X → Jac(R). This extension is also a quasihomeomor-
phism. Now, since X and Jac(R) are sober, f̃ is a homeomorphism by Proposition 2.4(2).

�

Let �� be the full subcategory of TOP whose objects are jacspectral spaces. By a jac-
spectralifiable space, we mean a ��-ifiable topological space. Next, we give some examples
of jacspectralifiable spaces.

Proposition 4.8. Let X be a topological space. If the T0-identification T0(X) of X is a
Jacobson compact space, then X is jacspectralifiable.

Proof. Following Proposition 4.2, it suffices to prove that each T0 compact Jacobson space
is jacspectralifiable (since each topological space is TOP0-ifiable).

Lemma 4.6 assures that the soberification S(X) is a compact Jacobson sober space.
Hence, S(X) is a jacspectral space, by Theorem 4.7. Now, Corollary 3.3 tells us that the
canonical injection of X into its soberification S(X) is a ��-ification of X . �

We state a similar problem to Problem 4.5.

Problem 4.9. What are jacspectralifiable spaces?

4.4. COMP-ifiable spaces. Let COMP be the full subcategory of TOP consisting of com-
pact topological spaces. It is well known that a completely regular space is COMP-ifiable.
The following is a more general result.

Let TOP3.5 be the full subcategory of TOP consisting of completely regular spaces.
It is known that every space has a TOP3.5-ification (see [26, 27]). Now, if F : A→ B and
G : B→ C are reflectors, then so is the composition G◦F. This yields the following propo-
sition.

Proposition 4.10. Every topological space is COMP-ifiable (i.e., COMP is reflective in
TOP).

Let f : X → Y be a continuous map between completely regular spaces. A natural ques-
tion is asked; when is the extension β( f ) : β(X)→ β(Y) a homeomorphism?
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According to the paper of Holgate [22], we get the following.

Proposition 4.11. Let X and Y be two completely regular spaces and f : X → Y a contin-
uous map. Then β( f ) : β(X)→ β(Y) is a homeomorphism if and only if f is an embedding
and β( f (X))= β(Y).

Proof. First, suppose that β( f ) is a homeomorphism. Then, the restriction of β( f ) to X is
an embedding, which implies that f : X → Y is an embedding. Clearly, f (X)⊆ Y ⊆ β(Y)
and

X ⊆ β( f )−1(Y)⊆ β(X). (4.1)

Now, we have the following commutative diagram:

X β( f )−1(Y) β(X)

β( f )� �

f (X) Y β(Y)

(4.2)

Since three natural maps indicated by downward arrows are homeomorphisms and
β(β( f )−1(Y)) = β(X), we have β(Y) = β( f (X)). Conversely, if f : X → Y is an embed-
ding, then the extension β( f ′) : β(X)→ β( f (X)) is a homeomorphism. Hence, if β( f (X))
= β(Y) in addition, then β( f ′) = β( f ), and hence β( f ) : β(X)→ β(Y) is a homeomor-
phism. �

5. The X-ification

5.1. Definitions and remarks. Let X , Y be two objects of a category C. By an X-ification
of Y , we mean a morphism p : Y → X such that p is orthogonal to X . We say that Y is
X-ifiable if there is an X-ification of Y . This is a particular case when D is the subcategory
of C whose objects are those isomorphic to a given object X .

Of course, if Y is isomorphic to X , then Y is X-ifiable. Also, if Y is X-ifiable and X is
isomorphic to Z, then Y is Z-ifiable.

The following result will be needed in order to discuss the notion of X-ifiable objects.

Proposition 5.1. Let C be a category and let D be a subcategory of C. If X is in D and Z is
a D-ification of Y , then the following statements are equivalent:

(i) Y is X-ifiable;
(ii) Z is X-ifiable.

Proof. (i)⇒(ii). Let p : Y → X be an X-ification of Y and q : Y → Z a D-ification of Y .
Since q ⊥D, there is a unique morphism p̃ : Z → X such that p̃ ◦ q = p. It is easily seen
that p̃ : Z → X is an X-ification of Z.
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(ii)⇒(i). One may check easily that if p : Y → Z is a D-ification of Y and q : Z → X is
an X-ification of Z, then q ◦ p : Y → X is an X-ification of Y . �

5.2. G-ification in the category of groups. Let G be a group. We turn our attention to
the study of G-ifiable groups in the category of groups GRP.

Examples 5.2. (1) Let (0) be the trivial group. Then each group is (0)-ifiable.
(2) If G is a cyclic group, then Z is G-ifiable. It suffices to remark that p : Z→ G= Zθ,

defined by n �→ nθ, is a G-ification of Z.

Remark 5.3. Let AB be the full subcategory of GRP whose objects are the Abelian
groups. It is well known that AB is a reflective subcategory of GRP. Thus following
Proposition 5.1, if G is an Abelian group and H is a group, then H is G-ifiable if and
only if H/D(H) is G-ifiable (where D(H) is the commutator subgroup of H).

The following notion proves to be useful for the study of G-ifiable groups.
It is worth noting that the concept of zero or constant morphisms was first introduced

and studied by Herrlich in [19], but has been considerably developed. In the algebraic
context, much work has been done in considering the associated “torsion theories,” see,
for example, [10].

Definition 5.4. Let G, H be two groups. Say that H is G-terminal if each morphism from
G to H is zero.

Example 5.5. For any torsion Abelian group G, the group Z is G-terminal.

Remarks 5.6. (1) Let (Gi, i∈ I) and (Hj , j ∈ J) be two collections of groups such that each
Hj is Gi-terminal. Then, the direct product Π j∈JHj is Πi∈IGi-terminal.

(2) If H is G-terminal and K a normal subgroup of G, then H is terminal relative to
the quotient group G/K .

The following result gives more examples of groups such that the group Z is terminal
relative to them.

Proposition 5.7. Let n ∈ N− {0,1} and G an n-divisible Abelian group (i.e., for each
x ∈G, there exists y ∈G such that x = ny). Then Z is G-terminal.

Proof. Suppose that there exists a nonzero morphism of groups p : G→ Z. Hence, there
exists a∈ Z−{0} such that p(G)= aZ. Let θ ∈G such that p(θ)= a. It is easily seen that
G= Ker(p)⊕Zθ.

SinceG is n-divisible, there exists θ1 ∈G such that θ = nθ1. We write θ1 = kθ + x, where
x ∈ Ker(p) and k ∈ Z. This gives θ = n(kθ + x)= θ + 0. By uniqueness of decomposition
of θ in the direct sum Zθ ⊕Ker(p), we get θ = nkθ. Thus a = nka; so that 1 = nk; and
thus n= 1, a contradiction. �

Remark 5.8. It follows from Proposition 5.7 that Z is terminal relative toQ, R, C.

The following observation gives some examples of G-ifiable groups.

Proposition 5.9. LetG,H be two groups such thatG isH-terminal. Then the direct product
G×H is a G-ifiable group.
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Proof. Let p : G×H → G be the canonical projection. Let us verify that p is a G-ification
of G×H . Let f : G×H →G be a morphism. Since G is H-terminal, f (x, y)= f (x,0), for
each x ∈ G and y ∈H . Now, it is easily seen that f̃ : G→ G defined by f̃ (x) = f (x,0) is

the unique endomorphism of G such that f̃ ◦ p = f . Thus G×H is G-ifiable. �

The above proposition makes the following definition allowable.

Definition 5.10. Let C be a subcategory of GRP. A group G is said to be a Tunisian group
(T-group) of C if each G-ifiable group in C is isomorphic to a direct product G×H , where
H is a group such that G is H-terminal.

Of course, the trivial group (0) is a T-group in GRP.
The following remark will be useful in the next result.

Remark 5.11. Let H be a nontrivial group and let p : G→H be an H-ification of a group
G. Then p is a nonzero morphism of groups. Indeed, if it is not the case, then 1H ◦ p =
θ ◦ p would imply that θ = 1H (where θ : H → H is the zero morphism), and thus H
would be the trivial group (0), a contradiction. Therefore, the H-ification of G is nonzero.

Theorem 5.12. Let � be the full subcategory of GRP whose objects are the groups such that
every subgroup is normal. Then Z is a T-group in �.

Proof. Let (G,+) be a Z-ifiable group in �. Let p : G → Z be a Z-ification of G. By
Remark 5.11, p is a nonzero morphism of groups. Hence, there exists a ∈ Z−{0} such
that p(G)= Za.

Let x0 ∈ G such that p(x0) = a. It is an easy exercise to verify that G = Ker(p)⊕Zx0.
Now, since x0 has infinite order, we get easily G∼ Z×Ker(p). It remains to prove that Z
is Ker(p)-terminal. Let g : Ker(p)→ Z be a morphism. Consider the morphism f : G =
Ker(p)⊕ Zx0 → Z defined by f (α+ β) = g(α), for each (α,β) ∈ Ker(p)× Zx0 (note that
one does not need the commutativity to verify that f is a morphism, since if G=H ⊕K ,
with H , K normal subgroups of G, then h+ k = k+h for each (h,k)∈H ×K).

Since p : G→ Z is a Z-ification of G, there exists a unique morphism f̃ : Z→ Z such
that f̃ ◦ p = f . Therefore, g(x) = 0, for each x ∈ Ker(p). This proves that Z is Ker(p)-
terminal, showing that Z is a T-group in the category �. �

Remark 5.13. The quotient of a T-group need not be a T-group (see Corollary 6.10).

6. Examples of non-T-groups

Everything that we discuss here is essentially made to exhibit non-T-groups of arbitrary
orders. We also prove that the quotient of a T-group need not be a T-group.

The following definition is natural, besides it will prove extremely useful in the study
of morphisms from Z/nZ to Z/mZ.

Definition 6.1. Two groups G, H are said to be relatively terminal if G is H-terminal and
H is G-terminal.

Proposition 6.2. Let G, H be two finite groups such that gcd(o(G),o(H))= 1, where o(G)
denotes the order of G. Then G, H are relatively terminal.
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Proof. It suffices to prove that H is G-terminal. For this, consider p ∈ hom(G,H) and
x ∈G, we have to prove that p(x)= 0H . Since o(G)x = 0G, we have o(G)p(x)= 0H . Hence,
o(p(x)) divides o(G). Thus, o(p(x)) divides gcd(o(G),o(H))= 1. Therefore, o(p(x))= 1,
so that p(x)= 0. �

Before stating our next result, let us recall some elementary facts about congruences.

Remark 6.3. (1) Cancelation law. Let a,b,c,m be in Z such that c 	= 0 and let d = gcd(m,c).
Then ac ≡ bc (mod m) if and only if a≡ b (mod (m/d)).

(2) Let α ∈ Z. Then gcd(α,m) = 1 if and only if there exists β ∈ Z such that αβ ≡ 1
(mod m).

Proposition 6.4. Let m,n ∈ N be such that one of them is nonzero. Then, (hom(Z/nZ,
Z/mZ),+) is a cyclic group of order d = gcd(m,n).

Proof. (i) First, suppose that d = 1. According to Proposition 6.2, Z/nZ and Z/mZ are
relatively terminal. Hence, hom(Z/nZ,Z/mZ) is a cyclic group of order 1.

(ii) Now, suppose that d 	= 1. We denote by x̄ the equivalence class of x modulo nZ and
ẋ the equivalence class of x modulo mZ. Let p ∈ hom(Z/nZ,Z/mZ) be a nonzero mor-
phism. To define p, it suffices to know that p(1̄) = k̇, where k ∈ {1,2, . . . ,m− 1}. Since
n1̄= 0̄, we have nk̇= 0̇. Thus nk≡0 (mod m). Hence, by Remark 6.3, k ≡ 0 (mod (m/d)),
where d = gcd(m,n) so that there exists t ∈ Z such that k = t(m/d). Let ρ : Z/nZ→ Z/mZ
be the morphism of groups defined by ρ(x̄)= (m/d)ẋ. Then p = tρ. It follows that hom(Z/
nZ,Z/mZ) is a cyclic group generated by the morphism ρ. It is clear that ρ is of or-
der d. �

Let us derive two important consequences of Proposition 6.4.

Corollary 6.5. The groups Z/nZ and Z/mZ are relatively terminal if and only if gcd(m,n)
= 1.

Corollary 6.6. Let G, H be two finite Abelian groups. Then the following statements are
equivalent:

(i) G and H are relatively terminal;
(ii) gcd(o(G),o(H))= 1.

Proof. It is well known that a finite Abelian group is in a unique manner a direct sum of
primary cyclic groups (fundamental theorem of finite Abelian groups). Now, Remark 5.6
and Corollary 6.5 permit to check easily the equivalence (i)⇔(ii). �

Problems 6.7. (1) Find two finite non Abelian groups G, H which are relatively terminal
and such that gcd(o(G),o(H)) 	= 1.

(2) Let G be a group not isomorphic to Z. Is there a group H(G) such that G, H(G) are
relatively terminal?

The following observation will be useful in the next theorem.

Remark 6.8. Let (G,+) be a finite cyclic group generated by ρ ∈ G and let d be the order
of ρ. Let α∈ Z and p = αρ ∈G. Then, p generates G if and only if gcd(α,d)= 1.



3402 The envelope of a subcategory in topology and group theory

We are now in a position to state the main result of this section.

Theorem 6.9. Let (m,n)∈N∗ ×N such that gcd(m,n) 	= 1. Then the following statements
are equivalent:

(i) Z/nZ is Z/mZ-ifiable;
(ii) m divides n.

Proof
Step 1. (ii)⇒(i). We prove that the morphism µ : Z/nZ→ Z/mZ defined by µ(x̄) = ẋ is
a Z/mZ-ification of Z/nZ. Let f ∈ hom(Z/nZ,Z/mZ). Then there exists a unique k ∈
{0,1, . . . ,m− 1} such that f = kµ (see the proof of Proposition 6.4). We denote by f̃ :
Z/mZ → Z/mZ the morphism defined by f̃ (ẋ) = kẋ. Then f̃ ◦ µ = f . Now, let g ∈
hom(Z/nZ,Z/mZ) such that g ◦ µ = f . Then there exists a unique a ∈ {0,1, . . . ,m− 1}
such that g = aµ. Since g ◦ µ= f , we get ax ≡ kx (mod m), for each x ∈ Z. Hence a≡ k
(mod m) so that a= k, and then g = f̃ .

Therefore, µ is a Z/mZ-ification of Z/nZ.
Step 2. Let m ∈ N∗ and n ∈ N such that gcd(m,n) 	= 1. If p : Z/nZ→ Z/mZ is a Z/mZ-
ification of Z/nZ, then p generates the cyclic group hom(Z/nZ,Z/mZ).

Proof of Step 2. From the proof of Proposition 6.4, we know that hom(Z/nZ,Z/mZ) is
the cyclic group generated by the morphism ρ : Z/nZ→ Z/mZ defined by ρ(x̄)= (m/d)ẋ,
with d = gcd(m,n). Thus, there exists α∈ {0,1, . . . ,d− 1} such that p = αρ. For each f ∈
hom(Z/nZ,Z/mZ), there exist a unique f̃ ∈ hom(Z/mZ,Z/mZ) such that f̃ ◦ p = f . On
the other hand, there exists a unique k ∈ {0,1, . . . ,d− 1} and a unique ak ∈ {0,1, . . . ,m−
1} such that f = kρ and f̃ = ak1Z/mZ. Hence, akα(m/d)ẋ = k(m/d)ẋ, for each ẋ ∈ Z/mZ.
Thus αak ≡ k (mod d). In particular, for f = ρ, we get k = 1, and then αa1 ≡ 1 (mod d).
By Remark 6.3, we have gcd(α,d)= 1. Thus p = αρ generates the cyclic group hom(Z/nZ,
Z/mZ), by Remark 6.8.
Step 3. (i)⇒(ii). Let p : Z/nZ→ Z/mZ be a Z/mZ-ification of Z/nZ. By Step 2, p generates
the cyclic group hom(Z/nZ,Z/mZ). Thus, there exists α ∈ {0,1, . . . ,d − 1} such p = αρ
and gcd(α,d)= 1.

Now, let us prove that m divides n. For β ∈ {0,1, . . . ,d− 1} and f = βρ, there exists
a unique f̃ ∈ hom(Z/mZ,Z/mZ) such that f̃ ◦ p. There exists aβ ∈ {0,1, . . . ,m− 1} such
that f̃ = aβ1Z/mZ. Let t ∈ {0,1, . . . ,d− 1} such that aβ ≡ t (mod d). Then

t1Z/mZ ◦ p = (t+d)1Z/mZ ◦ p = f . (6.1)

Hence, by the uniqueness of morphism extending f over p, we get t1Z/mZ = (t+d)1Z/mZ.
This leads to the congruence d ≡ 0 (mod m). Therefore, m divides n. �

The following corollary gives examples of non-T-groups of arbitrary order and proves
that the quotient of a T-group need not be a T-group.

Corollary 6.10. For each n∈N−{0,1}, Z/nZ is not a T-group in �.

Proof. Let p be a prime factor of n. By Theorem 6.9, Z/pnZ is Z/nZ-ifiable. If we suppose
that Z/nZ is a T-group, then there exists a group H such that Z/nZ is H-terminal and
Z/pnZ is isomorphic to Z/nZ×H . For a reason of cardinality, H is a group of order p.
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Hence, H is isomorphic to Z/pZ. It follows that Z/pnZ is isomorphic to Z/nZ× Z/pZ.
Thus Z/nZ× Z/pZ is a cyclic group. But it is a part of the folklore of algebra that the
direct product of two cyclic groups is cyclic if and only if their order are relatively prime.
Therefore, Z/nZ is not a T-group in �. �
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[6] C. Cassidy, M. Hébert, and G. M. Kelly, Reflective subcategories, localizations and factorization
systems, J. Austral. Math. Soc. Ser. A 38 (1985), no. 3, 287–329.

[7] Y. S. Cho, On reflective subcategories, Kyungpook Math. J. 18 (1978), no. 2, 143–146.
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[26] K. Morita, Čech cohomology and covering dimension for topological spaces, Fund. Math. 87
(1975), 31–52.

[27] , Dimension of general topological spaces, Surveys in General Topology (G. M. Reed, ed.),
Academic Press, New York, 1980, pp. 297–336.

[28] J. R. Porter, Extension function and subcategories of HAUS, Canad. Math. Bull. 18 (1975), no. 4,
587–590.

[29] J. Rada, M. Saorı́n, and A. del Valle, Reflective subcategories, Glasg. Math. J. 42 (2000), no. 1,
97–113.

[30] L. Stramaccia, Reflective subcategories and dense subcategories, Rend. Sem. Mat. Univ. Padova
67 (1982), 191–198.

[31] W. Tholen, Reflective subcategories, Topology Appl. 27 (1987), no. 2, 201–212.

Ahmed Ayache: Department of Mathematics, College of Sciences, University of Bahrain, P.O. Box
32038, Isa Town, Kingdom of Bahrain

E-mail address: aayache@sci.uob.bh

Othman Echi: Department of Mathematics, Faculty of Sciences, Tunis-El Manar University, Cam-
pus Universitaire, 2092 Tunis, Tunisia

E-mail addresses: othechi@yhoo.com; othechi@math.com

mailto:aayache@sci.uob.bh
mailto:othechi@yhoo.com
mailto:othechi@math.com


Hindawi Publishing Corporation
410 Park Avenue, 15th Floor, #287 pmb, New York, NY 10022, USA

http://www.hindawi.com/journals/denm/

Differential Equations 
& Nonlinear Mechanics

Website: http://www.hindawi.com/journals/denm/
Aims and Scope

Differential equations play a central role in describing natural phenomena 
as well as the complex processes that arise from science and technology. 
Differential Equations & Nonlinear Mechanics (DENM) will provide a 
forum for the modeling and analysis of nonlinear phenomena. One of the 
principal aims of the journal is to promote cross-fertilization between the 
various subdisciplines of the sciences: physics, chemistry, and biology, as 
well as various branches of engineering and the medical sciences.

Special efforts will be made to process the papers in a speedy and fair 
fashion to simultaneously ensure quality and timely publication.

DENM will publish original research papers that are devoted to modeling, 
analysis, and computational techniques. In addition to original full-length 
papers, DENM will also publish authoritative and informative review 
articles devoted to various aspects of ordinary and partial differential 
equations and their applications to sciences, engineering, and medicine.

Open Access Support

The Open Access movement is a relatively recent development in 
academic publishing. It proposes a new business model for academic 
publishing that enables immediate, worldwide, barrier-free, open access 
to the full text of research articles for the best interests of the scientific 
community. All interested readers can read, download, and/or print any 
Open Access articles without requiring a subscription to the journal in 
which these articles are published.

In this Open Access model, the publication cost should be covered by the 
author’s institution or research funds. These Open Access charges replace 
subscription charges and allow the publishers to give the published 
material away for free to all interested online visitors.

Instructions for Authors

Original articles are invited and should be submitted through the 
DENM manuscript tracking system at http://www.mstracking.com/
denm/. Only pdf files are accepted. If, for some reason, submission 
through the manuscript tracking system is not possible, you can contact  
denm.support@hindawi.com.

Associate Editors
N. Bellomo 
Italy
J. L. Bona 
USA
J. R. Cannon 
USA
S.-N. Chow 
USA
B. S. Dandapat 
India
E. DiBenedetto 
USA
R. Finn 
USA
R. L. Fosdick 
USA
J. Frehse 
Germany
A. Friedman 
USA
R. Grimshaw 
UK
J. Malek 
Czech Republic
J. T. Oden 
USA
R. Quintanilla 
Spain
K. R. Rajagopal 
USA
G. Saccomandi 
Italy
Y. Shibata 
Japan
Ivar Stakgold 
USA
Swaroop Darbha  
USA
A. Tani 
Japan
S. Turek 
Germany
A. Wineman 
USA

Editor-in-Chief
K. Vajravelu 
USA

An Open Access Journal


