
SOBER SPACES AND SOBER SETS

OTHMAN ECHI AND SAMI LAZAAR

Abstract. We introduce and study the notion of sober partially or-
dered sets. Some questions about sober spaces are also stated.

0. Introduction

The notion of sober spaces was introduced, firstly by the
Grothendieck school. Several authors have been interested on sober spaces
(see for example [1], [7], [9], [14]-[18], [1], [21], [23]-[25], [27]-[29])

In [11], H. Herrlich showed that sober spaces constitute the reflective
hull of the Sierpinski space in the category TOP of topological spaces and
continuous maps.

In [28], L. Skula has introduced sober spaces as b-closed subspaces of
powers of the Sierpinski space.

Other investigations have described them in terms of certain open filters
(see H. Herrlich [11] and S. S. Hong [19]).

R. Hoffman [14], has given a definition of “sober spaces” in terms of
irreducible filters; this definition is “more natural” then any other topological
approach to sober spaces.

Let L be a complete lattice. An element x ∈ L is said to be coprime if
for all finite subset F of L, if x ≤ ∨F , then F ∩ (x ↑) 6= ∅. We denote by
Spec∨(L) the family of all coprimes of L.

The hull-kernel topology on Spec(L) is the topology whose closed sets are
the C = (↓ x) ∩ Spec∨(L), where x ∈ L. A closed subset of a topological
space X is irreducible if C is coprime in Γ(X) (the lattice of closed sets of
X). The space X is said to be sober if every irreducible closed subset C of
X has a unique generic point (i.e., C = {x} for a unique x ∈ X).

We let SOB denote the full subcategory of TOP whose objects are sober
spaces.

Recall that a continuous map q : Y −→ Z is said to be a quasihomeo-
morphism if U 7−→ q−1(U) defines a bijection O(Z) −→ O(Y ) [10], where
O(Y ) is the set of all open subset of the space Y . A subset S of a topological
space X is said to be strongly dense in X, if S meets every nonempty locally
closed subset of X [10]. Thus a subset S of X is strongly dense if and only if
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the canonical injection S ↪→ X is a quasihomeomorphism. It is well known
that a continuous map q : X −→ Y is a quasihomeomorphism if and only if
the topology of X is the inverse image by q of that of Y and the subset q(X)
is strongly dense in Y [10]. The notion of quasihomeomorphism is used in
algebraic geometry and it has recently been shown that this notion arises
naturally in the theory of some foliations associated to closed connected
manifolds (see the papers [4], [5]).

The following properties are routine.
(a) Spec∨(Γ(X)) is a sober space.
(b) µX : X −→ Spec∨(Γ(X)) is a quasihomeomorphism.
(c) The functor Spec∨ ◦Γ : TOP −→ SOB is left adjoint to the inclusion

functor I : SOB ↪→ TOP .
It is clear, that if X is a T0-space, then X can be universally embedded

into its soberification Spec∨(Γ(X)).
Given a poset (X,≤) and x ∈ X, the generization of x in X is (↓ x) =

{y ∈ X | y ≤ x}, the specialization of x in X is (x ↑) = {y ∈ X | y ≥ x}. Let
X have a topology T and a partial ordering ≤. We say that T is compatible
with ≤ if {x} = (x ↑) for all x ∈ X.

We will say that a poset (X,≤) is a sober set if there is a topology T on
X which is compatible with the ordering ≤.

The main purpose of this paper is the investigation of sober sets.
Let (X, T ) be a space which has a basis of compact open sets. We denote

X? its dual (equipped with the cocompact topology). We prove in Theo-
rem 2.7, that if X and X? are sober, then (X,≤) satisfies Kaplansky’s two
conditions K1 and K2, where ≤ is the ordering induced by the topology T .

When (X,≤) is a totally ordered set, we prove, in Theorem 2.9, that
(X,≤) is a sober set if and only if each nonempty subset of X has an
infimum.

It is also proved that a space X is sober if and only if its one-point
compactification is sober. Some questions concerning T0-compactifications
and Wallman compactification are also stated.

1. Sober Spaces and Sober Sets

Let X be a topological space.
(1) The open sets of the hull-kernel topology on Spec∨(Γ(X)) are of the

form U s = {C ∈ Spec∨(Γ(X)) | C ∩ U 6= ∅}, where U is open in X.
(2) If C ∈ Spec∨(Γ(X)), then the closure {C} of {C} for the hull-kernel

topology is (↓ C). Thus the hull-kernel topology on Spec∨(Γ(X)) is com-
patible with the order ⊇.

Let ≤ be a quasiorder on a set X. A subset Y of X is said to be left-
directed in (X,≤) if for each x, y ∈ Y , there is some z ∈ Y such that z ≤ x
and z ≤ y.
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Let (X, T ) be a topological space. By the quasiorder induced by the
topology T , we mean the binary relation ≤ defined on X by; x ≤ y if and
only if y ∈ {x}.
Remarks 1.1. (1) Let (X, T ) be a topological space and ≤be the quasiorder
induced by the topology T . If Y is a subset of X and Y is left-directed,
then Y is irreducible in (X, T ).

(2) Suppose that (X, T ) is an Alexandroff space (any intersection of open
sets of (X, T ) is open). Then a subset Y ⊆ X is irreducible if and only if Y
is left-directed (see R. Hoffman [17, Lemma 1.1]).

The following definitions are natural.

Definitions 1.2. (1) Let (X,≤) be a quasiordered set and Y a nonempty
subset of X. By a quasiinfimum (resp. quasisupremum) of Y , we mean an
element x ∈ X such that x ≤ y (resp. y ≤ x) for each y ∈ Y ; and if z ∈ X
is such that z ≤ y (resp. y ≤ z) for each y ∈ Y , we have z ≤ x (resp.
x ≤ z).

(2) A sequence (xn)n∈N in a quasiordered set is said to be quasistationnary
if there is p ∈ N such that xn ≤ xp and xp ≤ xn for each n ≥ p.

A space X is called quasisober [19] if and only if every nonempty irre-
ducible closed subset has at least a generic point. Clearly, a space is sober
if and only if it is a quasisober T0-space.

Proposition 1.3. Let (X, T ) be a quasisober space and ≤ the quasiorder
induced by the topology T . Then each left-directed subset of (X,≤) has a
quasiinfimum in its closure.

Proof. Let Y be a left-directed subset of X. Then Y is an irreducible subset
of X, by Remark 1.1 Y has a generic point a; {a} = Y . Thus a ≤ y, for
each y ∈ Y . On the other hand, if z ∈ X is such that z ≤ y, for each y ∈ Y ,
then Y ⊆ {z}. Therefore, Y ⊆ {z}; and consequently, z ≤ a, proving that a
is an infimum of Y . ¤

Recall that an Alexandroff space is a topological space in which any in-
tersection of open sets is open. A T0-Alexandroff space is sometimes called
discrete Alexandroff. It is worth noting that Alexandroff spaces have several
applications especially in digital topology and theoretical computer science.
Also, Alexandroff T0-spaces have been studied, by Ivashchenko, as discrete
topological models of continuous spaces in theoretical physics [20].

The following result gives a complete characterization of Alexandroff qua-
sisober spaces.

Theorem 1.4. Let X be an Alexandroff space. Then the following state-
ments are equivalent:

(i) X is quasisober;
(ii) Each decreasing sequence of (X,≤) is quasistationary, where ≤ is the

quasiorder induced by the topology.
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Proof. (i) =⇒ (ii) Let (xn)n∈N be a decreasing sequence of (X,≤). Since
Y = {xn | n ∈ N} is left-directed, then Y has a quasiinfimum a in Y , by
Proposition 1.3; so that {a} = Y .

But (↓ a) is an open subset of X containing a, this yields (↓ a) ∩ Y 6= ∅.
Hence there is p ∈ N such that xp ∈ (↓ a). Therefore, xn ≤ xp ≤ a ≤ xn ≤
xp, for each n ≥ p, proving that the sequence (xn)n∈N is quasistationary.

(ii) =⇒ (i) Let C be an irreducible closed subset of X. Suppose that C

has no generic point. Pick x0 ∈ C. Then {x0} ⊆ C; so that there is y0 ∈ C

such that y0 /∈ {x0}; consequently, {x0}∪ {y0} ⊆ C. Since C is left-directed
(see Remarks 1.1), there is x1 ∈ C such that x1 ≤ x0 and x1 ≤ y0.

Necessarily, x0 6≤ x1; if not {x0} = {x1} and thus y ∈ {x1} = {x0},
a contradiction. One may do the same thing for x1 ∈ C in order to get
x2 ∈ C such that x2 ≤ x1 and x1 6≤ x2 etc ... This procedure provides a
decreasing sequence (xn)n∈N of elements of C which is not quasistationary,
a contradiction. It follows that C has a generic point. ¤

Links between sober and quasisober spaces is given by S. S. Hong in [19,
Proposition 2.2], by proving that a space is quasisober if and only if its
T0-reflection is sober.

The following provides a more general result concerning sober and qua-
sisober spaces.

Theorem 1.5. Let q : X −→ Y be a quasihomeomorphism. Then the
following properties hold:
(1) If q is onto, then the following statements are equivalent:

(i) X is quasisober;
(ii) Y is quasisober.

(2) Suppose that Y is sober; then the following statements are equivalent
(i) q is onto.
(ii) X is quasisober.

Proof. (1) (i) =⇒ (ii) Remark that, we need not suppose q onto for this
implication.

Suppose that X is quasisober. Let C be an irreducible closed subset of
Y . Then q−1(C) is an irreducible closed subset of X( see [2, Lemma 3.1]).
Hence there exists x ∈ q−1(C) such that q−1(C) = {x}. Thus q−1(C) =
{x} ⊆ q−1({q(x)}) ⊆ q−1(C) = {x}.

It follows that q−1(C) = q−1({q(x)}). Therefore, C = {q(x)} so that C
has a generic point.

We conclude that Y is quasisober.
(ii) =⇒ (i) We begin by remarking that if q is an onto quasihomeomor-

phism, then q is a closed map and q−1(q(C)) = C, for each closed subset C
of X (see [8, Lemma 1.1]).

Let C be an irreducible closed subset of X.
According to [2, Lemma 3.1] and the fact that q is a quasihomeomorphism,

there exists an irreducible closed subset D of Y such that C = q−1(D).
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Hence D has a generic point y. Let x ∈ X such that y = q(x). Thus
C = q−1({q(x)}). But q is a closed map; this yields

C = q−1({q(x)}) = q−1(q({x})) = {x}.
Therefore, X is quasisober.
(2) It remains to prove that, if X is quasisober, then q is onto.
Assume that X is quasisober. For each y ∈ Y , q−1({y}) is an irreducible

closed subset of X, by [2, Lemma 3.1]. Hence q−1({y}) has a generic point
x. clearly, we have

{x} ⊆ q−1({q(x)}) ⊆ q−1({y}) = {x}.
Thus q−1({q(x)}) = q−1({y}); so that {q(x)} = {y}; but since Y is a

T0-space, we get q(x) = y.
This proves that q is an onto map. ¤
Let us recall the T0-reflection of a topological space. It is well known

that to each topological X space there is a universal T0-space: Let ∼ be the
equivalence relation defined on X by; x ∼ y if and only if {x} = {y}. We
denote by T0(X) the quotient space X/ ∼, it is called the T0-reflection of
X.

Corollary 1.6. [19, Proposition 2.2 ] Let X be a topological space. Then X
is quasisober if and only if its T0-reflection is sober.

Proof. Let T0(X) be the T0-reflection of X. Then the canonical map µX :
X −→ T0(X) is an onto quasihomeomorphism, so that Theorem 1.5 com-
pletes the proof. ¤

2. Quasisober sets

Definition 2.1. A quasiordered set (X,≤) is said to be quasisober if there
exists a quasisober topology X which is compatible with ≤ (i.e., {x} = (x ↑),
for each x ∈ X). When ≤ is an ordering and (X,≤) is quasisober, we say
that (X,≤) is a sober set.

Remarks 2.2. (1) Let (X,≤) be a quasiordered set. The order-reflection of
(X,≤) is the poset (Y,¹), where Y is the quotient set of X by the equivalence
relation ≡ defined by x ≡ y if and only if x ≤ y and y ≤ x, the order ¹ on
Y is defined by x ¹ y if and only if x ≤ y (where x is the equivalence class
of x).

(2) If T is a topology which is compatible with the quasisober ≤, then
the quotient space X/T is homeomorphic to the T0-reflection of X and the
order induced by the quotient topology is isomorphic to the order ¹ defined
on Y .

Combining Remarks 2.2, and Corollary 1.6, we get easily the following:

Proposition 2.3. A quasiordered set (X,≤) is quasisober if and only if its
order-reflection is a sober set.
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Sober sets may be interpreted in term of the coprime spectrum of a lattice
Γ(Y ).

Proposition 2.4. Let (X,≤) be a poset. Then the following statements are
equivalent:

(i) (X,≤) is a sober set;
(ii) There exists a topological space Y such that (X,≤) is isomorphic to

(Spec∨(Γ(Y )),⊇).

Proof. (i) Suppose that (X,≤) is sober. Let T be an order compatible sober
topology on X. Then X is homeomorphic to its soberification Spec∨(Γ(Y ))
(equipped with the hull-kernel topology). The map µX : X −→ Spec∨(Γ(Y ))
defined by µX(x) = {x} is a homeomorphism. Thus µX induces an isomor-
phism from (X,≤) onto (Spec∨(Γ(Y )),⊇).

(ii) =⇒ (i) Let ϕ : (X,≤) −→ Spec∨(Γ(Y )),⊇) be an isomorphism of
posets. Let TY be the hull-kernel topology on (Spec∨(Γ(Y )),⊇). The inverse
image of TY by ϕ defined by T = {ϕ−1(U) : U ∈ O(Spec∨(Γ(Y )))} is a
topology on X and ϕ(X, T ) −→ (Spec∨(Γ(Y )), TY ) is a homeomorphism.
Therefore, T is a sober topology on X which is compatible with ≤. ¤

Problem 2.5. Characterize sober posets in purely order-theoretical condi-
tions.

Proposition 2.6. There is at most one Noetherian quasisober topology in-
ducing a given quasiorder on a space X.

Proof. Note first that the proof is similar to that of [13, Proposition 14].
It is easy to see that a quasisober Noetherian topology on a space X is

determined by the quasiorder (induced by the topology).
Indeed, if C is a closed subset of X, then there exist finitely many irre-

ducible closed subsets C1, ..., Cn of X such that C = C1 ∪ ...∪Cn ( since X
is Noetherian). On the other hand, X is quasisober; so that there is xi ∈ X

such that Ci = {xi}, for each i ∈ {1, ..., n}.
But {xi} = (xi ↑). This proves that closed sets are completely determined

by the quasiorder. ¤

Recall that a poset (X,≤) is said to be spectral if there is a commutative
ring R with unit such that (X,≤) is isomorphic with (Spec(R),⊆)[26].

In order that an order set (X,≤) be spectral it is necessary (but not
sufficient [26]) that it satisfies two conditions:

K1: Each nonempty totally ordered subset of X has a supremum and an
infimum (that is, X is up-complete and down-complete)

K2: For each a < b in X, there exist two adjacent elements a1 < b1 such
that a ≤ a1 < b1 ≤ b (that is, X is weakly atomic).

These properties were noted, for a ring spectrum by I. Kaplansky (see [22,
Theorems 9 and 11 ]), and then are called respectively the first condition
and the second condition of Kaplansky.
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Let X be a space which has a basis of compact open sets. We denote X?

its dual (equipped with the cocompact topology). Remark that if ≤ is the
quasiorder induced by the topology of X, then the topology of X? induces
the reverse order ≥ of ≤ [13].

Theorem 2.7. Let (X, T ) be a space which has a basis of compact open sets
and ≤ the order induced by the topology T . If X and X? are sober, then
(X,≤) satisfies K1 and K2.

Proof. (K1) Let C be a nonempty totally ordered subset of (X,≤). By
Proposition 1.3 (C,≤) has an infimum in C

T and (C,≥) has an infimum in
C

?. It follows that, in (X,≤), C has an infimum and a supremum.
(K2) Let x < y in X. Consider a maximal chain C between x and y.

Since x /∈ {y}, there is a compact open subset U of X such that x ∈ U and
y /∈ U .

Let us denote by x1 = Sup(C1), where C1 = {t ∈ C | t ∈ U} and
y1 = Inf(C2), where C2 = {t ∈ C | t /∈ U}.

Since C1 ⊆ U and U is closed in X?, we get x1 ∈ U .
On the other hand, C2 ⊆ (X − U) and (X − U) is closed in (X, T ); so

that y1 /∈ U .
For each t ∈ C1 and s ∈ C2, we have t < s [if not t ∈ {s}, contradicting

the fact that t ∈ U and s /∈ U ].
We conclude that x1 ≤ y1; and as x1 ∈ U and y1 /∈ U . This forces x1 < y1.
If we suppose that x1 < y1 are not adjacent, then there is z ∈ X such that

x1 < z < y1; and necessarily z /∈ C. Therefore, C ∪ {z} is a chain between
x and y, against the maximality of C. ¤

The following question is suggested by the anonymous referee.

Question 2.8. Under which hypothesis, the converse of Theorem 2.7 is true?

The following gives a complete characterization of totally ordered sober
sets.

Theorem 2.9. Let (X,≤) be a totally ordered set. Then the following state-
ments are equivalent:

(i) (X,≤) is a sober set;
(ii) Each nonempty subset of X has an infimum.

Proof. (i) =⇒ (ii) Follows immediately from Proposition 1.3.
(ii) =⇒ (i) Recall that the cop-topology on an order set (closure of points)

(X,≤) is the topology on X which has {(x ↑) : x ∈ X} as a sub-basis of
closed sets.

Clearly, the closed sets of the cop-topology on a totally ordered set (X,≤)
in which every nonempty subset has an infimum are ∅, X and (x ↑) (for each
x ∈ X).

Thus the cop-topology on (X,≤) is an order-compatible sober topology
on X. Therefore, (X,≤) is a sober set. ¤
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Example 2.10. A sober set (X,≤) that does not satisfy Kaplansky’s two
conditions (K1) and (K2).

Let X = [0, 1[ equipped with the natural order induced by that of R.
According to Theorem 2.9, (X,≤) is a sober set. However, it is clear that
(X,≤) does not satisfy Kaplansky’s two conditions (K1) and (K2).

3. Compactifications

Let X be a topological space, set X̃ = X ∪{∞} with the topology whose
members are the open subsets of X and all subsets U of X̃ such that X̃ \U

is a closed compact subset of X. The space X̃ is called the Alexandroff
extension of X (or the one-point compactification of X). It is well known
that the following properties hold :

(i) X̃ is compact and X is open in X̃.
(ii) X is dense in X̃.
(iii) X̃ is Hausdorff if and only if X is locally compact and Hausdorff.

Remark 3.1. Let X be a topological space and X̃ the Alexandroff extension
of X. Then the following properties hold:

(1) X̃ is a T0-space if and only if X is a T0-space.
(2) Let C be a closed subset of X̃.
- If ∞ /∈ C, then C is closed in X.
- If ∞ ∈ C, then C \ {∞} is closed in X.
(3) If C is an irreducible closed subset of X̃ such that ∞ /∈ C, then C is

an irreducible closed subset of X.
(4) Let C be a closed subset of X̃ such that ∞ /∈ C. If C = {a}X

, then

C = {a}X̃
.

Theorem 3.2. Let X be a topological space. Then the following statements
are equivalent:

(i) X is a sober space;
(ii) The one-point compactification X̃ is a sober space.

Proof.

(ii) =⇒ (i) Let C be a nonempty irreducible closed subset of X. Then C
X̃

is an irreducible closed subset of X̃. Since X̃ is sober, there exists x ∈ C such

that C
X̃ = {x}X̃

. Hence, by Remark 3.1 (4), C = C
X̃ ∩X = {x}X̃ ∩X =

{x}X
. Thus C has a generic point in X, proving that X is sober.

(i) =⇒ (ii) Let C be a nonempty irreducible closed subset of X̃. Then three
cases arise:
Case 1 : ∞ /∈ C. In this case C is an irreducible closed subset of X. Thus
C = {x}X

, since X is sober. Therefore, C = {x}X̃
.

Case 2 : C = {∞}. In this case we have C = {∞}X̃
.
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Case 3 : C = D∪ {∞}, where D is a nonempty closed subset of X. In this
case D is irreducible in X, so that D has a generic point in X: there exists
x ∈ D such that D = {x}X

. Hence C = {x}X∪ {∞}, this leads to the
fact that {x}X

is not closed in X̃ , by irreducibility of C. Consequently,

{x}X̃
= {x}X∪ {∞} = C, proving that X̃ is sober. ¤

The previous result incites us to ask the following question.

Question 3.3. (1) Let X be a space (resp. a T1-space). We denote by βωX
(resp. WX) the T0-compactification of X introduced by Herrlich in [12]
(resp. The Wallman compactification of X introduced in [30]). Are the
following equivalences true:

[X is sober] ⇐⇒ [βωX is sober];

[X is sober] ⇐⇒ [WX is sober]?

(2) More precisely, we ask when is βωX (resp. WX) sober?
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