ON TD-SPACES

Othman Echi

Abstract. This paper deals with some new properties of T_D -spaces. These properties are used in order to give an intrinsic topological characterization of the Goldman spectrum of a commutative ring.

1. Introduction. There are three famous separation axioms in topology namely, T_0 , T_1 , and T_2 .

We denote by **TOP** the category of topological spaces with continuous maps as morphisms, and by **TOP**_i the full subcategory of **TOP** whose object are T_i -spaces. It is well-known that **TOP**_{i+1} is a reflective subcategory of **TOP**_i, for i = -1, 0, 1, with **TOP**₋₁ = **TOP**. Thus, **TOP**_i is reflective in **TOP**, for each i = 0, 1, 2 [10]. In other words, there is a universal T_i -space for every topological space X; we denote it by $T_i(X)$. The assignment $X \mapsto T_i(X)$ defines a functor T_i from **TOP** onto **TOP**_i, which is a left adjoint functor of the inclusion functor **TOP**_i \hookrightarrow **TOP**.

The T_D separation axiom was introduced by Aull and Thron [1]. Recall that a topological space X is said to be a T_D -space if for each $x \in X$, $\{x\}$ is locally closed.

For the separation axioms T_0 , T_1 , T_2 , T_D , we have classically the following implications:

$$T_2 \Longrightarrow T_1 \Longrightarrow T_D \Longrightarrow T_0.$$

We denote by \mathbf{TOP}_D the full subcategory of \mathbf{TOP} whose objects are T_D -spaces.

Unfortunately, the T_D property is not reflective in **TOP**. Indeed, in [2], Brümer has proved that the countable product of the Sierpinski space is not a T_D -space. On the other hand, according to Herrlich and Strecker [7], if a subcategory **A** is reflective in a category **B**, then for each category **I**, **A** is closed under the formation of **I**-limits in **B** [7]. [Taking **I**, a discrete category, one can see that in particular **A** is closed under products in **B**.] Therefore the full subcategory **TOP**_D of **TOP** whose objects are T_D -spaces is not reflective in **TOP**.

This paper deals with some new categorical properties of T_D -spaces (see Theorem 1.8).

Let R be a commutative ring with unit. We denote by Spec(R) the set of all prime ideals of R.

A topology \mathcal{T} on a set X is defined to be *spectral* [8] (and (X, \mathcal{T}) is called a *spectral space*) if the following conditions hold:

- (i) \mathcal{T} is sober:
- (ii) the compact open subsets of X form a basis of \mathcal{T} ;

(iii) the family of compact open subsets of X is closed under finite intersections.

In a remarkable paper, M. Hochster proved that a topological space is homeomorphic to the prime spectrum of some ring if and only if it is a spectral space [8]. In the same paper, Hochster characterized the space of maximal ideals of a ring. When a particular subset of the spectrum of a ring is given, a classical question, of whether we can give a topological characterization of that subspace, is asked.

A prime ideal \mathfrak{p} of R is said to be a Goldman ideal (G-ideal, for short) if there exists a maximal ideal \mathfrak{M} of the polynomial ring R[X] such that $\mathfrak{p} = \mathfrak{M} \cap R$. Goldman ideals are important objects of investigation in algebra and algebraic geometry. Note, in particular, that G-ideals have been used by Goldman [5] and Krull [11] for a short inductive proof of the Nullstellensatz. It is a part of the folklore of algebra that \mathfrak{p} is a G-ideal of R if and only if $\{\mathfrak{p}\}$ is locally closed in Spec(R) (endowed with the hull-kernel topology).

The subspace of Spec(R), whose elements are G-ideals is called the $Goldman\ spectrum$ of R and it is denoted by Gold(R).

As in [4], by a *goldspectral space* we mean a topological space X which is homeomorphic to Gold(R) for some ring R.

A natural question is "give an intrinsic topological characterization of goldspectral spaces".

The goal of this paper is to re-prove our characterization of goldspectral spaces [4] in a short elegant manner. More precisely, using our main result Theorem 1.5, we give an intrinsic topological characterization of the Goldman prime spectrum of a commutative ring (see Theorem 2.2). We prove that a topological space X is goldspectral if and only if X satisfies the following conditions:

- (a) X is compact and has a basis of compact open subsets which is closed under finite intersections.
- (b) X is a T_D -space.
- 2. T_D -spaces and Quasihomeomorphisms. Let us first recall some notions which were introduced by Grothendieck school, such as quasihomeomorphisms, strongly dense subsets and sober spaces.

If X is a topological space, we denote by $\mathfrak{D}(X)$ the set of all open subsets of X. Recall that a continuous map $q: Y \longrightarrow Z$ is called a quasi-homeomorphism if $U \longmapsto q^{-1}(U)$ defines a bijection $\mathfrak{D}(Z) \longrightarrow \mathfrak{D}(Y)$. A subset S of a topological space X is said to be strongly dense in X, if S meets every nonempty locally closed subset of X. Thus, a subset S of X is strongly dense if and only if the canonical embedding $S \hookrightarrow X$ is a quasi-homeomorphism. It is well-known that a continuous map $q: X \longrightarrow Y$ is a quasihomeomorphism if and only if the topology of X is the inverse image by q of that of Y and the subset q(X) is strongly dense in Y [6].

A subspace Y of X is called *irreducible*, if each nonempty open subset of Y is dense in Y (equivalently, if C_1 and C_2 are two closed subsets of X such that $Y \subseteq C_1 \cup C_2$, then $Y \subseteq C_1$ or $Y \subseteq C_2$). Let C be a closed subset of a space X; we say that C has a generic point if there exists $x \in C$ such that $C = \{x\}$. Recall that a topological space X is said to be sober if any nonempty irreducible closed subset of X has a unique generic point.

The main result of this section is Theorem 1.5. Before stating it, we need a sequence of lemmas.

Lemma 1.1 ([3]). Let X be a topological space. Then the following properties hold:

- (1) if X is a T_0 -space which has a basis of compact open subsets, then Gold(X) is strongly dense in X;
- (2) if Gold(X) is strongly dense in X, then it is the smallest strongly dense subset of X.

<u>Lemma 1.2 (Never two without three)</u>. Let $p: X \longrightarrow Y$ and $q: Y \longrightarrow Z$ be two continuous maps. If two among the three maps $(p, q, q \circ p)$ are quasihomeomorphisms, then so is the third one.

<u>Lemma 1.3.</u> Let X be a topological space and A a strongly dense subset of X. Then A is strongly dense in each subspace of X containing A.

<u>Proof.</u> The proof is straightforward; but I would like to check it in terms of quasihomeomorphisms. Clearly, B is strongly dense in X. Hence, the canonical embeddings $i: A \hookrightarrow X$, $j: B \hookrightarrow X$ are quasihomeomorphisms. If we let $t: A \hookrightarrow B$ be the canonical embedding, then $i = j \circ t$. By Lemma 1.2, $t: A \hookrightarrow B$ is a quasihomeomorphism; this means that A is strongly dense in B.

Lemma 1.4 ([3]). Let $q: X \longrightarrow Y$ be a quasihomeomorphism. Then the following properties hold:

- (1) if X is a T_0 -space, then q is injective;
- (2) if X is sober and Y is a T_0 -space, then q is a homeomorphism.

Now, we are in a position to state our main result.

Theorem 1.5. Let X be a T_0 -space and Y be a topological space such that Gold(X) is strongly dense in X and Gold(Y) is strongly dense in Y. Let $q: X \longrightarrow Y$ be a quasihomeomorphism. Then the following properties hold:

- (a) q(Gold(X)) = Gold(q(X)) = Gold(Y);
- (b) the induced map $q_G: Gold(X) \longrightarrow Gold(Y)$ which carries x to q(x) is a homeomorphism.

Proof.

(a) Let us consider the map $q_1: X \longrightarrow q(X)$ induced by q. Let $j: q(X) \longrightarrow Y$ be the canonical embedding; then j is a quasihomeomorphism. Since $q = j \circ q_1$, we get q_1 a quasihomeomorphism (by "Never two without three"). Now, since X is a T_0 -space, q_1 is injective, by Lemma 1.4. Thus, q_1 is a bijective quasihomeomorphism; so that it is a homeomorphism.

It follows that $Gold(q(X)) = q_1(Gold(X)) = q(Gold(X))$. Since X is homeomorphic to q(X), Gold(q(X)) is strongly dense in q(X). But q(X) is strongly dense in Y; this forces Gold(q(X)) to be strongly dense in Y.

On the other hand, Gold(Y) is the smallest strongly dense subset of Y (see Lemma 1.1); this yields

$$Gold(Y) \subseteq Gold(q(X)) = q(Gold(X)) \subseteq q(X).$$

By Lemma 1.3, Gold(Y) is strongly dense in q(X); but Lemma 1.1 says that Gold(q(X)) is the smallest strongly dense subset of q(X); consequently, $Gold(q(X)) \subseteq Gold(Y)$. We conclude that q(Gold(X)) = Gold(q(X)) = Gold(Y).

(b) Since the induced map $q_1: X \longrightarrow q(X)$ is a homeomorphism and $q_1(Gold(X)) = Gold(Y)$, the mapping $q_G: Gold(X) \longrightarrow Gold(Y)$ defined by $x \longmapsto q(x)$ is also a homeomorphism.

<u>Proposition 1.6.</u> Every quasihomeomorphism between two T_D -spaces is a homeomorphism.

<u>Proof.</u> It follows immediately from Theorem 1.5 (b).

Note also that one may give an easy direct proof. Indeed, let $q: X \longrightarrow Y$ be a quasihomeomorphism between two T_D -spaces. Hence, q is injective by Lemma 1.4. On the other hand, q(X) is strongly dense in Y and every point set of Y is locally closed; so that q(X) = Y. Thus, q is a bijective quasihomeomorphism. Therefore, q is a homeomorphism.

The following concept, motivated by Proposition 1.6, proves to be useful.

<u>Definition 1.7</u>. Let \mathbf{C} be a category. By a *categoroid* of \mathbf{C} we mean a full subcategory of \mathbf{C} closed under isomorphisms in which all arrows are isomorphisms.

Theorem 1.4 and Definition 1.6 immediately give the following categorical properties of T_D -spaces.

<u>Theorem 1.8.</u> Let \mathbf{C} be the category where objects are topological spaces X such that Gold(X) is strongly dense in X and arrows are quasi-homeomorphisms. Let \mathbf{C}_1 be the full subcategory of \mathbf{C} whose objects are T_D -spaces. Then \mathbf{C}_1 is a coreflective categoroide of \mathbf{C} . The coreflector is $\mu_X \colon Gold(X) \hookrightarrow X$.

Remark 1.9. C_1 is strictly contained in C. Let Y be an infinite set equipped with the cofinite topology and $\omega \notin Y$. Set $X = Y \cup \{\omega\}$ and equip it with the topology whose closed sets are X and the closed sets of Y. Clearly, Gold(X) = Y is strongly dense in X. However, X is not a T_D -space, since $\{\omega\}$ is not locally closed.

3. The Goldman Spectrum of a Ring. Our next investigation of Theorem 1.5 is a new proof of our main result of [4], which gives an intrinsic topological characterization of the Goldman spectrum of a commutative ring.

We need to recall the the notion of soberification of a topological space which proved to play an important part in the next theorem.

Let X be a topological space and $\mathbb{S}(X)$ the set of all nonempty irreducible closed subsets of X [6]. Let U be an open subset of X and set

$$\widetilde{U} = \{ C \in \mathbb{S}(X) \mid U \cap C \neq \emptyset \}.$$

Then the collection (\widetilde{U}, U) is an open subset of X) provides a topology on S(X) and the following properties hold [6]:

- (i) the map $\mu_X : X \longrightarrow \mathbb{S}(X)$ which carries x to $\overline{\{x\}}$ is a quasihomeomorphism;
- (ii) $\mathbb{S}(X)$ is a sober space.

The topological space $\mathbb{S}(X)$ is called the *soberification* of X.

Before stating the result which characterizes goldspectral spaces, let us give a straightforward remark.

Remark 2.1. If $q: X \longrightarrow Y$ is a quasihomeomorphism, then the following properties hold:

- (a) Let U be an open subset of Y, then U is compact if and only if $q^{-1}(U)$ is compact.
- (b) X has a basis of compact open subsets closed under finite intersections if and only if so is Y.

Theorem 2.2. Let X be a topological space. Then X is goldspectral if and only if X satisfies the following properties:

- (a) X is compact;
- (b) X has a basis of compact open subsets;
- (c) the intersection of two compact open subsets is compact;
- (d) X is a T_D -space.

Proof.

- For each ring R, Gold(R) = Gold(Spec(R)) is a T_D -space. Since the canonical embedding $Gold(R) \hookrightarrow Spec(R)$ is a quasihomeomorphism and Spec(R) satisfies properties (a), (b), and (c), then so is Gold(R), by Remark 2.1.
- Conversely, let X be a space satisfying properties (a), (b), (c), and (d). Let $\underline{\mathbb{S}(X)}$ be the soberification of X and $\mu_X \colon X \longrightarrow \mathbb{S}(X)$ defined by $\mu_X(x) = \overline{\{x\}}$ the canonical embedding of X into $\mathbb{S}(X)$.

According to Theorem 1.5, X is homeomorphic to $Gold(\mathbb{S}(X))$. Thus, Remark 2.1 implies immediately that $\mathbb{S}(X)$ is a spectral space, completing the proof.

Acknowledgement. I wish to thank the referee for his valuable suggestions. I also thank Professors H. P. Kunzi and G. Brümer from the University of Cape Town (South Africa) for their comments on some categorical properties about T_D -spaces.

References

- 1. C. E. Aull and W. J. Thron, "Separation Axioms Between T_0 and T_1 , Indag. Math., 24 (1962), 26–37.
- G. Brümmer, "Initial Quasi-Uniformities," Indag. Math., 31 (1969), 403–409.
- 3. E. Bouacida, O. Echi, G. Picavet, and E. Salhi, "An Extension Theorem for Sober Spaces and the Goldman Topology," *Int. J. Math. Math. Sc.*, 51 (2003), 3217–3239.
- 4. O. Echi, "A Topological Characterization of the Goldman Prime Spectrum of a Commutative Ring," Comm. Algebra, 28 (2000), 2329–2337.
- 5. O. Goldman, "Hilbert Rings and the Hilbert Nullstallensatz," $Math.\ Z.,\ 54\ (1951),\ 136-140.$
- A. Grothendieck and J. Dieudonné, Eléments de Géométrie Algébrique, Die Grundlehren der mathematischen Wissenschaften, Vol. 166, Springer-Verlag, New York, 1971.
- H. Herrlich, G. E. Strecker, Category Theory. An Introduction, second edition, Sigma Series in Pure Mathematics 1, Heldermann Verlag, Berlin, 1979.
- 8. M. Hochster, "Prime Ideal Structure in Commutative Rings," *Trans. Amer. Math. Soc.*, 142 (1969), 43–60.
- 9. M. Hochster, "The Minimal Prime Spectrum of a Commutative Ring," Canad. J. Math., 23 (1971), 749–758.

- $10.\,$ S. MacLane, Categories for the Working Mathematician, Springer, New York, 1971.
- 11. W. Krull, "Jacobsonsche Ringe, Hilbertscher Nullstellensatz Dimensionenstheorie," *Math. Z.*, 54 (1951), 354–387.

Mathematics Subject Classification (2000): 54B30, 54D10, 54F65

Othman Echi
Department of Mathematics
Faculty of Sciences of Tunis
University of Tunis El-Manar
"Campus Universitaire" 2092 El-Manar II
Tunis, TUNISIA
email: othechi@vahoo.com

email: othechi@yahoo.com email: othechi@math.com