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Abstract

A pair of Mond–Weir type second order symmetric nondifferentiable multiobjective

programs is formulated. Weak, strong and converse duality theorems are established

under g-pseudobonvexity assumptions. Special cases are discussed to show that this

paper extends some work appeared in this area.
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1. Introduction

Symmetric duality in mathematical programming in which the dual of the

dual is the primal problem was first introduced by Dorn [6]. Subsequently,

Dantzig et al. [5], Mond [13] and Bazaraa and Goode [1] formulated a pair

of symmetric dual programs and established duality under convexity–concavity
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assumptions. Later, Mond and Weir [16] presented a distinct pair of symmetric

dual programs which allows the weakening of convexity–concavity conditions

to pseudoconvexity–pseudoconcavity.

Weir and Mond [19] discussed symmetric duality in multiobjective program-

ming by using the concept of efficiency. Chandra and Prasad [4] presented a

pair of multiobjective programming problems by associating a vector valued
infinite game to this pair. Gulati et al. [9] also established duality results for

multiobjective symmetric dual problems without nonnegativity constraints.

Mangasarian [11] considered a nonlinear program and discussed second

order duality under certain inequalities. Mond [14] assumed rather simple in-

equalities. Bector and Chandra [2] defined the functions satisfying the inequal-

ities in [14] to be bonvex–boncave. To give examples of bonvex–boncave

functions, Mond [14] has shown that a convex (concave) quadratic or linear

function is bonvex (boncave). Mangasarian [11, p. 609] and Mond [14, p. 93]
have also indicated possible computational advantages of the second order

duals over the first order duals. Yang [20] also discussed second order Mangas-

arian type dual formulation under generalized representation conditions.

Gulati et al. [8] studied two distinct pairs of second order symmetric dual

programs under g-bonvexity and g-pseudobonvexity. Recently, Hou and Yang

[10] and Yang et al. [21] generalized the results in [8] to nondifferentiable pro-

grams on the lines of [15] involving second order F-convex and second order

F-pseudoconvex functions.
In this paper, we formulate a new pair of second order symmetric nondiffer-

entiable multiobjective dual programs of Mond–Weir type and prove duality

theorems under g-pseudobonvexity assumptions. These results include, as spe-

cial cases, recent duality results for multiobjective symmetric programs given

by Suneja et al. [18] and for single objective symmetric programs studied by

Mond and Schechter [15], Gulati et al. [8,9], Mishra [12], and Hou and Yang

[10].
2. Preliminaries

Let F be a twice differentiable real valued function of x and y, where x2Rn

and y2Rm. Then $xF and $yF denote the gradient vectors with respect to x

and y respectively. $xxF and $yyF are respectively, the n·n and m·m symmet-

ric Hessian matrices. ($xxFr)y denotes the matrix whose (i, j)th element is
o
oyi
ðrxxFrÞj, where r2Rn.

The following conventions for vectors in Rn will be used:

x=u () xi=ui; i ¼ 1; 2; . . . ; n;

x � u () xi=ui; i ¼ 1; 2; . . . ; n; and x 6¼ u;

x > u () xi > ui; i ¼ 1; 2; . . . ; n:



Definition 1. Let C be a compact convex set in Rn. The support function s(xjC)

of C is defined by

sðxjCÞ ¼ maxfxty : y 2 Cg:
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Definition 2. Let D be a nonempty convex set in Rn, and let w :D!R be con-

vex. Then z is called a subgradient of w at �x 2 D if

wðxÞ=wð�xÞ þ ztðx� �xÞ for all x 2 D:
A support function s(xjC), being convex and everywhere finite, has a subdif-

ferential, that is, there exists z such that s(yjC)= s(xjC)+zt(y�x) for all x2C.

The set of all subdifferentials of s(xjC) is given by

osðxjCÞ ¼ fz 2 C : ztx ¼ sðxjCÞg:
For a set S, the normal cone to S at a point x2S is defined by

NSðxÞ ¼ fy : ytðz� xÞ50 for all z 2 Sg:
When C is a compact convex set, then y is in NC(x) if and only if s(yjC)=xty,

i.e., x is a subdifferential of s at y.

Consider the following multiobjective programming problem:

ðPÞ Minimize f ðxÞ ¼ ½f1ðxÞ; f2ðxÞ; . . . ; fkðxÞ�
subject to x 2 X ¼ fx 2 Rn : gðxÞ50g;

where f :Rn!Rk and g :Rn!Rm.

Definition 3 [7]. A point �x 2 X is said to be an efficient solution of (P), if there

exists no other x2X such that f ðxÞ6 f ð�xÞ.

A point �x is said to be properly efficient solution of (P), if it is efficient and if
there exists a scalar M>0 such that, for each i2{1,2, . . .,k} and x2X satisfying

fiðxÞ < fið�xÞ, we have

fið�xÞ � fiðxÞ
fjðxÞ � fjð�xÞ

5M ;

for some j such that fjðxÞ > fjð�xÞ.

Definition 4 [3]. A point �x 2 X is said to be a weak efficient solution of (P), if

there exists no other x2X with f ðxÞ < f ð�xÞ.

It readily follows that if �x 2 X is efficient, then it is also weak efficient.

Definition 5. A real twice differentiable function F(x,y) defined on X·Y, where

X and Y are open sets in Rn and Rm respectively, is said to be g-pseudobonvex
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at u2X for fixed v2Y, if there exists a function g :X·X!Rn such that for

r2Rn, x2X,

gtðx; uÞ½rxF ðu; vÞ þ rxxF ðu; vÞr�=0 ) F ðx; vÞ=F ðu; vÞ � 1
2
rtrxxF ðu; vÞr:
A real twice differentiable function F(x,y) :X·Y!R is said to be g-pseudo-
boncave if �F is g-pseudobonvex.
3. Mond–Weir type symmetric duality

We now state the following pair of second order nondifferentiable multiob-

jective symmetric programs and establish weak, strong and converse duality

theorems.

Primal ðMPÞ :
Minimize Lðx; y; z; pÞ ¼ L1ðx; y; z1; p1Þ; L2ðx; y; z2; p2Þ; . . . ; Lkðx; y; zk; pkÞ½ �
subject to

Xk

i¼1

ki ryfiðx; yÞ � zi þryyfiðx; yÞpi
� �

50; ð1Þ

yt
Xk

i¼1

ki ryfiðx; yÞ � zi þryyfiðx; yÞpi
� �

=0; ð2Þ

k > 0; ð3Þ
zi 2 Di; i ¼ 1; 2; . . . ; k: ð4Þ

Dual ðMDÞ :
Maximize Hðu; v;w; rÞ ¼ H 1ðu; v;w1; r1Þ;H 2ðu; v;w2; r2Þ; . . . ;Hkðu; v;wk; rkÞ½ �
subject to

Xk

i¼1

ki rxfiðu; vÞ þ wi þrxxfiðu; vÞri½ �=0; ð5Þ

ut
Xk

i¼1

ki rxfiðu; vÞ þ wi þrxxfiðu; vÞri½ �50; ð6Þ

k > 0; ð7Þ
wi 2 Ci; i ¼ 1; 2; . . . ; k; ð8Þ

where

Liðx; y; zi; piÞ ¼ fiðx; yÞ þ sðxjCiÞ � ytzi � 1
2
ptiryyfiðx; yÞpi;
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Hiðu; v;wi; riÞ ¼ fiðu; vÞ � sðvjDiÞ þ utwi � 1
2
rtirxxfiðu; vÞri;

ki2R, pi2Rm, ri2Rn, i=1,2, . . .,k, and fi, i=1,2, . . .,k are thrice differentiable
functions from Rn·Rm to R, Ci and Di, i=1,2, . . .,k are compact convex sets in

Rn and Rm. Also we take p=(p1,p2, . . .,pk), r=(r1, r2, . . ., rk), w=(w1,w2, . . .,wk)

and z=(z1,z2, . . .,zk).

Theorem 1 (Weak duality). Let (x,y,k, z, p) be feasible for (MP) and

(u, v,k,w, r) be feasible for (MD). Let

(i)
Pk

i¼1ki½fið�; vÞ þ ð�Þtwi� be g1-pseudobonvex at u,
(ii)

Pk
i¼1ki½fiðx; �Þ � ð�Þtzi� be g2-pseudoboncave at y,

(iii) g1(x,u) +u=0, and

(iv) g2(v,y)+y=0.

Then

Lðx; y; z; pÞiHðu; v;w; rÞ:
Proof. From (5) and hypothesis (iii), we have

gt
1ðx; uÞ

Xk

i¼1

ki rxfiðu; vÞ þ wi þrxxfiðu; vÞri½ �

=� ut
Xk

i¼1

ki rxfiðu; vÞ þ wi þrxxfiðu; vÞri½ �=0 ðby (6)Þ:

Therefore, hypothesis (i) implies

Xk

i¼1

ki fiðx; vÞ þ xtwi½ �=
Xk

i¼1

ki fiðu; vÞ þ utwi �
1

2
rtirxxfiðu; vÞri

� �
: ð9Þ

From (1) and hypothesis (iv), it follows that

gt
2ðv; yÞ

Xk

i¼1

ki ryfiðx; yÞ � zi þryyfiðx; yÞpi
� �

5� yt
Xk

i¼1

ki ryfiðx; yÞ � zi þryyfiðx; yÞpi
� �

50 ðusing (2)Þ;

which, in view of hypothesis (ii) gives

Xk

i¼1

ki f ðx; vÞ � vtzi½ �5
Xk

i¼1

ki fiðx; yÞ � ytzi �
1

2
ptiryyfiðx; yÞpi

� �
: ð10Þ
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The relations (9) and (10) yield

Xk

i¼1
ki fiðx; yÞ þ xtwi � ytzi �

1

2
ptiryyfiðx; yÞpi

� �

=

Xk

i¼1

ki fiðu; vÞ þ utwi � vtzi �
1

2
rtirxxf ðu; vÞri

� �
:

Finally, using xtwi5 s(xjCi), wi2Ci, i=1,2, . . .,k and vt zi5 s(vjDi), zi2Di,
i=1,2, . . .,k, we obtain

Xk

i¼1
ki fiðx; yÞ þ sðxjCiÞ � ytzi �

1

2
ptiryyfiðx; yÞpi

� �

=

Xk

i¼1

ki fiðu; vÞ � sðvjDiÞ þ utwi �
1

2
rtirxxf ðu; vÞri

� �
:

Hence

Lðx; y; z; pÞiHðu; v;w; rÞ: �
Theorem 2 (Strong duality). Let f be thrice differentiable on Rn·Rm. Let

ð�x; �y; �k;�z; �pÞ be a weak efficient solution for (MP); fix k ¼ �k in (MD) and suppose

that

(A1) $yy fi is nonsingular for all i=1,2, . . ., k,

(A2) the matrix
Pk

i¼1
�kiðryyfi�piÞy is positive or negative definite, and

(A3) the set ryf1 ��z1 þryyf 1�p1;ryf2 ��z2 þryyf2�p2; . . . ;ryfk ��zk þryyfk�pk
� �

is linearly independent,

then there exist �wi 2 Rn, i=1,2, . . ., k such that �p ¼ 0, ð�x; �y; �k; �w;�r ¼ 0Þ is feasible

for (MD) and

Lð�x; �y;�z; �pÞ ¼ Hð�x; �y; �w;�rÞ:
Also, if the hypotheses of Theorem 1 are satisfied for all feasible solutions of

(MP) and (MD), then ð�x; �y; �k; �w;�rÞ is a properly efficient solution for (MD).

Proof. Since ð�x; �y; �k;�z; �pÞ is a weak efficient solution of (MP), by the Fritz–John

conditions [17], there exist a2Rk, b2Rm, m2R, d2Rk and �wi 2 Rn, i=1,2, . . .,k
such that

Xk

i¼1

ai rxfi þ �wi �
1

2
ðryyfi�piÞx�pi

� �

þ
Xk

i¼1

�ki ryxfi þ ryyfi�piÞx
� �

ðb � m�yÞ ¼ 0;
�

ð11Þ
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�wi 2 Ci; �xt�wi ¼ sð�xjCiÞ; i ¼ 1; 2; . . . ; k; ð12Þ

Xk

i¼1
ðai � m�kiÞ½ryfi � �zi� þ

Xk

i¼1

�ki½ryyfi�ðb � m�y � m�piÞ

þ
Xk

i¼1

ðryyfi�piÞy ðb � m�yÞ�ki �
1

2
ai�pi

� �
¼ 0; ð13Þ

ðb � m�yÞt ryfi � �zi þryyfi�pi
� �

� di ¼ 0; i ¼ 1; 2; . . . ; k; ð14Þ

½ðb � m�yÞ�ki � ai�pi�
tryyfi; i ¼ 1; 2; . . . ; k; ð15Þ

ai�y þ �kiðb � m�yÞ 2 NDið�ziÞ; i ¼ 1; 2; . . . ; k; ð16Þ

bt
Xk

i¼1
�kiðryfi � �zi þryyfi�piÞ ¼ 0; ð17Þ

m�yt
Xk

i¼1

�kiðryfi � �zi þryyfi�piÞ ¼ 0; ð18Þ

dt�k ¼ 0; ð19Þ

ða; b; m; dÞ=0; ð20Þ

ða; b; m; dÞ 6¼ 0: ð21Þ
In view of �k > 0 and d=0, it readily follows from (19) that d=0. Therefore

from (14), we have

ðb � m�yÞt ryfi � �zi þryyfi�pi
� �

¼ 0; i ¼ 1; 2; . . . ; k: ð22Þ

Since $yyfi is nonsingular for i=1,2, . . .,k, (15) yields

ðb � m�yÞ�ki ¼ ai�pi; i ¼ 1; 2; . . . ; k: ð23Þ
Now from (13),

Xk

i¼1

ðai � m�kiÞðryfi � �zi þryyfi�piÞ þ
1

2

Xk

i¼1

�kiðryyfi�piÞyðb � m�yÞ ¼ 0: ð24Þ

On multiplying (24) by ðb � m�yÞt from the left and using (22), we get

ðb � m�yÞt
Xk

i¼1

�kiðryyfi�piÞyðb � m�yÞ ¼ 0;

which by the hypothesis (A2) implies

b ¼ m�y: ð25Þ
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Therefore, from (24)

Xk

i¼1

ðai � m�kiÞðryfi � �zi þryyfi�piÞ ¼ 0;

which by the hypothesis (A3) yields

ai ¼ m�ki; i ¼ 1; 2; . . . ; k: ð26Þ
Suppose m=0. Then from (25) and (26), we get b=0 and a=0 respectively.

Thus (a,b,m,d)=0, a contradiction to (21). Hence

m > 0: ð27Þ
Since �ki > 0, i=1,2, . . .,k, from (26) and (27), we get

ai > 0; i ¼ 1; 2; . . . ; k:

Using (25) in (23), we have

ai�pi ¼ 0; i ¼ 1; 2; . . . ; k;

and hence

�pi ¼ 0; i ¼ 1; 2; . . . ; k: ð28Þ
Now using relations (25) and (28) in (11), it follows that

Xk

i¼1

ai½rxfi þ �wi� ¼ 0;

which by (26) gives

Xk

i¼1

�ki½rxfi þ �wi� ¼ 0;

and hence, we also have

�xt
Xk

i¼1

�ki½rxfi þ �wi� ¼ 0:

Therefore ð�x; �y; �k; �w;�r ¼ 0Þ is feasible for (MD).

From (16) and (25), we obtain

�yt�zi ¼ sð�yjDiÞ; i ¼ 1; 2; . . . ; k: ð29Þ
By (12) and (29), we get

fið�x; �yÞ þ sð�xjCiÞ � �yt�zi � 1
2
�ptiryyfið�x; �yÞ�pi

¼ fið�x; �yÞ � sð�yjDiÞ þ �xt�wi � 1
2
�rtirxxfið�x; �yÞ�ri; i ¼ 1; 2; . . . ; k:

Thus ð�x; �y; �k; �w;�r ¼ 0Þ is a feasible solution of the dual problem (MD) and

Lð�x; �y;�z; �pÞ ¼ Hð�x; �y; �w;�rÞ: ð30Þ
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Now we show proper efficiency of ð�x; �y; �k; �w;�rÞ for (MD) by exhibiting a con-

tradiction. If ð�x; �y; �k; �w;�rÞ is not efficient for (MD) then there exists a feasible

solution ð�u;�v; �k; �w;�rÞ for (MD) such that

Hð�x; �y; �w;�rÞ6Hð�u;�v; �w;�rÞ:
In view of (30), it follows that

Lð�x; �y;�z; �pÞ6Hð�u;�v; �w;�rÞ;
which contradicts Theorem 1. If ð�x; �y; �k; �w;�rÞ is not properly efficient for (MD),

then for some feasible ð�u;�v; �k; �w;�rÞ of (MD) and for some i,

fið�u;�vÞ � sð�vjDiÞ þ �ut�wi �
1

2
�rtirxxfið�u;�vÞ�ri

> fið�x; �yÞ � sð�yjDiÞ þ �xt�wi �
1

2
�rtirxxfið�x; �yÞ�ri

and

fið�u;�vÞ � sð�vjDiÞ þ �ut�wi �
1

2
�rtirxxfið�u;�vÞ�ri

� �

� fið�x; �yÞ � sð�yjDiÞ þ �xt�wi �
1

2
�rtirxxfið�x; �yÞ�ri

� �

> M fjð�x; �yÞ � sð�yjDjÞ þ �xt�wj �
1

2
�rtjrxxfjð�x; �yÞ�rj

	 
�

� fjð�u;�vÞ � sð�vjDjÞ þ �ut�wj �
1

2
�rtjrxxfjð�u;�vÞ�rj

	 
�

for any M>0, and all j satisfying

fjð�x; �yÞ � sð�yjDjÞ þ �xt�wj �
1

2
�rtjrxxfjð�x; �yÞ�rj

> fjð�u;�vÞ � sð�vjDjÞ þ �ut�wj �
1

2
�rjrxxfjð�u;�vÞ�rj;

�xt�wi ¼ sð�xjCiÞ and �yt�zi ¼ sð�yjDiÞ, i=1,2, . . .,k.
This means that

fið�u;�vÞ � sð�vjDiÞ þ �ut�wi �
1

2
�rtirxxfið�u;�vÞ�ri

� �

� fið�x; �yÞ þ sð�xjCiÞ � �yt�zi �
1

2
�rtirxxfið�x; �yÞ�ri

� �

can be made arbitrarily large. Thus for any �k > 0,

Xk

i¼1

�ki fið�u;�vÞ � sð�vjDiÞ þ �ut�wi �
1

2
�rtirxxfið�u;�vÞ�ri

� �

>
Xk

i¼1

�ki fið�x; �yÞ þ sð�xjCiÞ � �yt�zi �
1

2
�rtirxxfið�x; �yÞ�ri

� �
:

This again contradicts Theorem 1. h
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A converse duality theorem may be merely stated as its proof would run

analogously to that of Theorem 2.

Theorem 3 (Converse duality). Let f be thrice differentiable on Rn·Rm. Let

ð�u;�v; �k; �w;�rÞ be a weak efficient solution for (MD); fix k ¼ �k in (MP) and suppose

that

(B1) $xxfi is nonsingular for all i=1,2, . . .,k,
(B2) the matrix

Pk
i¼1

�kiðrxxfi�riÞx is positive or negative definite, and

(B3) the set rxf1� �w1 þrxxf1�r1;rxf2� �w2þrxxf2�r2; . . . ;rxfk � �wk þrxxfk�rkð Þ
is linearly independent,

then there exist �zi 2 Rm, i=1,2, . . .,k such that �r ¼ 0, ð�u;�v; �k;�z; �p ¼ 0Þ is feasible

for (MP) and

Lð�u;�v;�z; �pÞ ¼ Hð�u;�v; �w;�rÞ:

Also, if the hypotheses of Theorem 1 are satisfied for all feasible solutions

of (MP) and (MD), then ð�u;�v; �k;�z; �pÞ is a properly efficient solution for

(MP).
4. Special cases

(i) Let Ci={0} and Di={0}, i=1,2, . . .,k. Then (MP) and (MD) are reduced

to the second order multiobjective symmetric dual programs of Suneja

et al. [18]. If in addition p=0, r=0. Then we get the multiobjective sym-

metric dual pair of Gulati et al. [9].

(ii) If k=1 in (MP) and (MD), then we obtain nondifferentiable symmetric
dual programs studied by Hou and Yang [10].

(iii) If in (MP) and (MD), k=1, Ci={0} and Di={0}, i=1,2, . . .,k, then we

get the symmetric dual programs of Gulati et al. [8] and Mishra [12] with

the addition of nonnegativity constraints x=0 and y=0 in (MP) and

(MD) respectively.

(iv) If k=1, p=0 and r=0, then we obtain symmetric dual multiobjective pro-

gramming problems studied by Mond and Schechter [15].

(v) From the symmetry of primal and dual problems (MP) and (MD), we can
construct other new symmetric dual pairs. For example, if we take

Ci={Aiy :y
tAiy51 and Di={Bix :x

tBix51, i=1,2, . . .,k, where Ai and

Bi, i=1,2, . . .,k are positive semidefinite matrices, then it can be easily

verified that ðxtAixÞ
1
2 ¼ sðxjCiÞ and ðytBiyÞ

1
2 ¼ sðyjDiÞ, i=1,2, . . .,k. Thus,

a number of new symmetric dual pairs and duality results can be

obtained.
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5. Conclusion
In this article, a new pair of Mond–Weir type nondifferentiable multiobjec-
tive second order symmetric dual programs is presented and duality relations

between primal and dual problems are established. The nondifferentiability

terms in the form of support functions have been included in the objective

functions of each problem. The results developed in this paper improve and

generalize a number of existing results in the literature. These results can be

further generalized for minimax mixed integer programs, wherein some of

the primal and dual variables are constrained to belong to some arbitrary sets

e.g., the sets of integers.
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