Nondifferentiable second order symmetric duality in multiobjective programming

I. Ahmad*, Z. Husain
Department of Mathematics, Aligarh Muslim University, Aligarh-202 002, India

Received 21 April 2004; accepted 3 May 2004

Abstract

A pair of Mond-Weir type nondifferentiable multiobjective second order symmetric dual programs is formulated and symmetric duality theorems are established under the assumptions of second order F-pseudoconvexity/ F-pseudoconcavity. © 2005 Elsevier Ltd. All rights reserved.

Keywords: Symmetric duality; Multiobjective programming; Second order F-pseudoconvexity; Efficient solutions

1. Introduction

Symmetric duality in mathematical programming was introduced by Dorn [8], who defined a program and its dual to be symmetric if the dual of the dual is the original problem. Chandra and Husain [5] studied a pair of symmetric dual nondifferentiable programs by assuming convexity/concavity of the scalar function $f(x, y)$. Subsequently, Chandra et al. [3] presented another pair of symmetric dual nondifferentiable programs weakening convexity/concavity assumptions to pseudoconvexity/pseudoconcavity.

Weir and Mond [18] discussed symmetric duality in multiobjective programming by using the concept of efficiency. Chandra and Prasad [6] presented a pair of multiobjective programming problems by associating a vector valued infinite game to this pair. Gulati et al. [10] also established duality results for multiobjective symmetric dual problems without non-negativity constraints.

[^0]Mangasarian [12] considered a nonlinear program and discussed second order duality under certain inequalities. Mond [14] assumed rather simple inequalities. Bector and Chandra [2] defined the functions satisfying the inequalities in [14] to be bonvex/boncave. Mangasarian [12, p. 609] and Mond [14, p. 93] have indicated possible computational advantages of second order duals over the first order duals. An alternative approach to higher order duality is given in [17].

Mishra [13] and Gulati et al. [9] studied single objective second order symmetric duality for Wolfe and Mond-Weir type models. Kim et al. [11] presented a pair of multiobjective second order symmetric dual problems and established duality results under convexity. Recently, Yang and Hou [19] applied invexity to multiobjective second order symmetric dual problems of [11] omitting non-negativity constraints but with an additional assumption on the invexity.

In this paper, we consider a pair of nondifferentiable multiobjective second order symmetric dual programs of Mond-Weir type. We prove weak, strong and converse duality theorems under second order F-pseudoconvexity/F-pseudoconcavity.

2. Notations and preliminaries

The following convention for inequalities will be used: If $x, u \in R^{n}$, then $x \geqq u \Leftrightarrow x_{i} \geqq u_{i}$, $i=1,2, \ldots, n ; x \geq u \Leftrightarrow x \geqq u$ and $x \neq u ; x>u \Leftrightarrow x_{i}>u_{i}, i=1,2, \ldots, n$.

If $g(x, y)$ is a real valued twice differentiable function of x and y, where $x \in R^{n}$ and $y \in R^{m}$, then $\nabla_{x} g(\bar{x}, \bar{y})$ and $\nabla_{y} g(\bar{x}, \bar{y})$ denote the gradient vectors with respect to first and second variable evaluated at (\bar{x}, \bar{y}) respectively. Also $\nabla_{x x} g(\bar{x}, \bar{y})$ and $\nabla_{y y} g(\bar{x}, \bar{y})$ are, respectively, the $n \times n$ and $m \times m$ symmetric Hessian matrices with respect to first and second variable evaluated at (\bar{x}, \bar{y}).

Consider the following multiobjective programming problem:
(P) Minimize $f(x)$
subject to $x \in X$,
where $f: R^{n} \rightarrow R^{k}$ and $X \subset R^{n}$.
Definition 2.1. A point $\bar{x} \in X$ is said to be weak efficient for (P) if there exists no other $x \in X$ with $f(x)<f(\bar{x})$.
Definition 2.2. A point $\bar{x} \in X$ is said to be an efficient solution of (P) if there exists no other $x \in X$ such that $f(x) \leq f(\bar{x})$.

Definition 2.3. A functional $F: X \times X \times R^{n} \longrightarrow R$ (where $X \subseteq R^{n}$) is sublinear in its third component, if for all $x, u \in X$,
(i) $F\left(x, u ; a_{1}+a_{2}\right) \leqq F\left(x, u ; a_{1}\right)+F\left(x, u ; a_{2}\right)$ for all $a_{1}, a_{2} \in R^{n}$; and
(ii) $F(x, u ; \alpha a)=\alpha \bar{F}(x, u ; a)$ for all $\alpha \in R_{+}$, and for all $a \in R^{n}$.

For notational convenience, we write

$$
F_{x, u}(a)=F(x, u ; a) .
$$

Definition 2.4. A real valued twice differentiable function $g(., y): X \times Y \rightarrow R$ is said to be second order F-pseudoconvex at $u \in X$ with respect to $p \in R^{n}$, if there exists a sublinear functional $F: X \times X \times R^{n} \rightarrow R$ such that

$$
F_{x, u}\left(\nabla_{x} g(u, y)+\nabla_{x x} g(u, y) p\right) \geqq 0 \Rightarrow g(x, y) \geqq g(u, y)-\frac{1}{2} p^{t} \nabla_{x x} g(u, y) p
$$

A real valued twice differentiable function g is second order F-pseudoconcave if $-g$ is second order F-pseudoconvex.

We shall make use of the following generalized Schwartz inequality:

$$
x^{t} A y \leqq\left(x^{t} A x\right)^{\frac{1}{2}}\left(y^{t} A y\right)^{\frac{1}{2}}
$$

where $x, y \in R^{n}$, and $A \in R^{n} \times R^{n}$ is a positive semidefinite matrix. Equality holds if for some $\lambda \geqq 0$, $A x=\lambda A y$.

3. Mond-Weir type second order symmetric duality

We present the following pair of second order nondifferentiable multiobjective problems with k-objectives and establish weak, strong and converse duality theorems.
(MP): Minimize $K(x, y, w, p)=\left(K_{1}(x, y, w, p), K_{2}(x, y, w, p), \ldots, K_{k}(x, y, w, p)\right)$

$$
\begin{align*}
& \text { subject to } \quad \sum_{i=1}^{k} \lambda_{i}\left[\nabla_{y} f_{i}(x, y)-C_{i} w_{i}+\nabla_{y y} f_{i}(x, y) p_{i}\right] \leqq 0 \tag{1}\\
& y^{t} \sum_{i=1}^{k} \lambda_{i}\left[\nabla_{y} f_{i}(x, y)-C_{i} w_{i}+\nabla_{y y} f_{i}(x, y) p_{i}\right] \geqq 0 \tag{2}\\
& w_{i}^{t} C_{i} w_{i} \leqq 1, i=1,2, \ldots, k \tag{3}\\
& \lambda>0 \tag{4}\\
& x \geqq 0 \tag{5}
\end{align*}
$$

(MD): Maximize $G(u, v, z, r)=\left(G_{1}(u, v, z, r), G_{2}(u, v, z, r), \ldots, G_{k}(u, v, z, r)\right)$

$$
\begin{align*}
& \text { subject to } \quad \sum_{i=1}^{k} \lambda_{i}\left[\nabla_{x} f_{i}(u, v)+B_{i} z_{i}+\nabla_{x x} f_{i}(u, v) r_{i}\right] \geqq 0 \tag{6}\\
& u^{t} \sum_{i=1}^{k} \lambda_{i}\left[\nabla_{x} f_{i}(u, v)+B_{i} z_{i}+\nabla_{x x} f_{i}(u, v) r_{i}\right] \leqq 0 \tag{7}\\
& z_{i}^{t} B_{i} z_{i} \leqq 1, i=1,2, \ldots, k \tag{8}\\
& \lambda>0 \tag{9}\\
& v \geqq 0 \tag{10}
\end{align*}
$$

where

$$
\begin{aligned}
& K_{i}(x, y, w, p)=f_{i}(x, y)+\left(x^{t} B_{i} x\right)^{\frac{1}{2}}-y^{t} C_{i} w_{i}-\frac{1}{2} p_{i}^{t} \nabla_{y y} f_{i}(x, y) p_{i} \\
& G_{i}(u, v, z, r)=f_{i}(u, v)-\left(v^{t} C_{i} v\right)^{\frac{1}{2}}+u^{t} B_{i} z_{i}-\frac{1}{2} r_{i}^{t} \nabla_{x x} f_{i}(u, v) r_{i}
\end{aligned}
$$

$\lambda_{i} \in R, p_{i} \in R^{m}, r_{i} \in R^{n}, i=1,2, \ldots, k$, and $f_{i}, i=1,2, \ldots, k$ are thrice differentiable functions from $R^{n} \times R^{m}$ to R, B_{i} and $C_{i}, i=1,2, \ldots, k$ are positive semidefinite matrices. Also we take $p=\left(p_{1}, p_{2}, \ldots, p_{k}\right), r=\left(r_{1}, r_{2}, \ldots, r_{k}\right), w=\left(w_{1}, w_{2}, \ldots, w_{k}\right)$ and $z=\left(z_{1}, z_{2}, \ldots, z_{k}\right)$.

Remark. If $k=1$, then (MP) and (MD) become the nondifferentiable second order symmetric dual programs of Ahmad and Husain [1].

Theorem 3.1 (Weak Duality). Let (x, y, λ, w, p) be feasible for (MP) and (u, v, λ, z, r) feasible for (MD). Assume that
(i) $\sum_{i=1}^{k} \lambda_{i}\left[f_{i}(., v)+(.)^{t} B_{i} z_{i}\right]$ is second order F-pseudoconvex at u,
(ii) $\sum_{i=1}^{k} \lambda_{i}\left[f_{i}(x,)-.(.)^{t} C_{i} w_{i}\right]$ is second order F-pseudoconcave at y,
(iii) $F_{x, u}(\xi)+u^{t} \xi \geqq 0$, for $\xi \in R^{n}$, and
(iv) $F_{v, y}(\eta)+y^{t} \eta \geqq 0$, for $\eta \in R^{m}$. Then

$$
K(x, y, w, p) \nsubseteq G(u, v, z, r) .
$$

Proof. By taking $\xi=\sum_{i=1}^{k} \lambda_{i}\left(\nabla_{x} f_{i}(u, v)+B_{i} z_{i}+\nabla_{x x} f_{i}(u, v) r_{i}\right)$, we have

$$
\begin{aligned}
& F_{x, u}\left(\sum_{i=1}^{k} \lambda_{i}\left(\nabla_{x} f_{i}(u, v)+B_{i} z_{i}+\nabla_{x x} f_{i}(u, v) r_{i}\right)\right) \\
& \quad \geqq-u^{t}\left(\sum_{i=1}^{k} \lambda_{i}\left(\nabla_{x} f_{i}(u, v)+B_{i} z_{i}+\nabla_{x x} f_{i}(u, v) r_{i}\right)\right) \geqq 0 \text { (by hypothesis (iii) and (7)), }
\end{aligned}
$$

which by second order F-pseudoconvexity of $\sum_{i=1}^{k} \lambda_{i}\left[f_{i}(., v)+(.)^{t} B_{i} z_{i}\right]$ at u yields

$$
\begin{equation*}
\sum_{i=1}^{k} \lambda_{i}\left[f_{i}(x, v)+x^{t} B_{i} z_{i}\right] \geqq \sum_{i=1}^{k} \lambda_{i}\left[f_{i}(u, v)+u^{t} B_{i} z_{i}-\frac{1}{2} r_{i}^{t} \nabla_{x x} f_{i}(u, v) r_{i}\right] \tag{11}
\end{equation*}
$$

On taking $\eta=-\sum_{i=1}^{k} \lambda_{i}\left(\nabla_{y} f_{i}(x, y)-C_{i} w_{i}+\nabla_{y y} f_{i}(x, y) p_{i}\right)$, we have

$$
\begin{aligned}
& F_{v, y}\left(-\sum_{i=1}^{k} \lambda_{i}\left(\nabla_{y} f_{i}(x, y)-C_{i} w_{i}+\nabla_{y y} f_{i}(x, y) p_{i}\right)\right) \\
& \quad \geqq y^{t}\left(\sum_{i=1}^{k} \lambda_{i}\left(\nabla_{y} f_{i}(x, y)-C_{i} w_{i}+\nabla_{y y} f_{i}(x, y) p_{i}\right)\right) \geqq 0 \text { (by hypothesis (iv) and (2)), }
\end{aligned}
$$

which by second order F-pseudoconcavity of $\sum_{i=1}^{k} \lambda_{i}\left[f_{i}(x,)-.(.)^{t} C_{i} w_{i}\right]$ at y gives

$$
\begin{equation*}
\sum_{i=1}^{k} \lambda_{i}\left[f_{i}(x, v)-v^{t} C_{i} w_{i}\right] \leqq \sum_{i=1}^{k} \lambda_{i}\left[f_{i}(x, y)-y^{t} C_{i} w_{i}-\frac{1}{2} p_{i}^{t} \nabla_{y y} f_{i}(x, y) p_{i}\right] \tag{12}
\end{equation*}
$$

Combining inequalities (11) and (12), we get

$$
\begin{aligned}
\sum_{i=1}^{k} \lambda_{i}\left[x^{t} B_{i} z_{i}+v^{t} C_{i} w_{i}\right] \geqq & \sum_{i=1}^{k} \lambda_{i}\left[f_{i}(u, v)+u^{t} B_{i} z_{i}-\frac{1}{2} r_{i}^{t} \nabla_{x x} f_{i}(u, v) r_{i}\right. \\
& \left.-f_{i}(x, y)+y^{t} C_{i} w_{i}+\frac{1}{2} p_{i}^{t} \nabla_{y y} f_{i}(x, y) p_{i}\right]
\end{aligned}
$$

Applying the Schwartz inequality, (3) and (8), we obtain

$$
\begin{aligned}
& \sum_{i=1}^{k} \lambda_{i}\left[f_{i}(x, y)+\left(x^{t} B_{i} x\right)^{\frac{1}{2}}-y^{t} C_{i} w_{i}-\frac{1}{2} p_{i}^{t} \nabla_{y y} f_{i}(x, y) p_{i}\right] \\
& \quad \geqq \sum_{i=1}^{k} \lambda_{i}\left[f_{i}(u, v)-\left(v^{t} C_{i} v\right)^{\frac{1}{2}}+u^{t} B_{i} z_{i}-\frac{1}{2} r_{i}^{t} \nabla_{x x} f_{i}(u, v) r_{i}\right] .
\end{aligned}
$$

Hence

$$
K(x, y, w, p) \nsubseteq G(u, v, z, r)
$$

Theorem 3.2 (Strong Duality). Let \underline{f} be thrice differentiable on $R^{n} \times R^{m}$ and $(\bar{x}, \bar{y}, \bar{\lambda}, \bar{w}, \bar{p})$, a weak efficient solution for (MP), and $\lambda=\bar{\lambda}$ fixed in (MD). Assume that
(i) $\nabla_{y y} f_{i}$ is nonsingular for all $i=1,2, \ldots, k$,
(ii) the matrix $\sum_{i=1}^{k} \bar{\lambda}_{i}\left(\nabla_{y y} f_{i} \bar{p}_{i}\right)_{y}$ is positive or negative definite, and
(iii) the set $\left\{\nabla_{y} f_{1}-C_{1} \bar{w}_{1}+\nabla_{y y} f_{1} \bar{p}_{1}, \nabla_{y} f_{2}-C_{2} \bar{w}_{2}+\nabla_{y y} f_{2} \bar{p}_{2}, \ldots, \nabla_{y} f_{k}-C_{k} \bar{w}_{k}+\nabla_{y y} f_{k} \bar{p}_{k}\right\}$ is linearly independent,
where $f_{i}=f_{i}(\bar{x}, \bar{y}), i=1,2, \ldots, k$. Then $(\bar{x}, \bar{y}, \bar{\lambda}, \bar{z}, \bar{r}=0)$ is feasible for $(M D)$, and the two objectives have the same values. Also, if the hypotheses of Theorem 3.1 are satisfied for all feasible solutions of $(M P)$ and $(M D)$, then $(\bar{x}, \bar{y}, \bar{\lambda}, \bar{z}, \bar{r}=0)$ is an efficient solution for (MD).

Proof. Since ($\bar{x}, \bar{y}, \bar{\lambda}, \bar{w}, \bar{p}$) is a weak efficient solution of (MP), by the Fritz-John conditions [7], there exist $\alpha \in R^{k}, \beta \in R^{m}, \gamma \in R, \nu \in R^{k}, \delta \in R^{k}$ and $\xi \in R^{n}$ such that

$$
\begin{align*}
& \sum_{i=1}^{k} \alpha_{i}\left[\nabla_{x} f_{i}+B_{i} \bar{z}_{i}-\frac{1}{2}\left(\nabla_{y y} f_{i} \bar{p}_{i}\right)_{x} \bar{p}_{i}\right] \\
& \quad+\sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{y x} f_{i}+\left(\nabla_{y y} f_{i} \bar{p}_{i}\right)_{x}\right](\beta-\gamma \bar{y})-\xi=0 \tag{13}\\
& \sum_{i=1}^{k} \alpha_{i}\left[\nabla_{y} f_{i}-C_{i} \bar{w}_{i}-\frac{1}{2}\left(\nabla_{y y} f_{i} \bar{p}_{i}\right)_{y} \bar{p}_{i}\right] \\
& \quad+\sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{y y} f_{i}+\left(\nabla_{y y} f_{i} \bar{p}_{i}\right)_{y}\right](\beta-\gamma \bar{y})-\gamma \sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{y} f_{i}-C_{i} \bar{w}_{i}+\nabla_{y y} f_{i} \bar{p}_{i}\right]=0 \tag{14}\\
& (\beta-\gamma \bar{y})^{t}\left[\nabla_{y} f_{i}-C_{i} \bar{w}_{i}+\nabla_{y y} f_{i} \bar{p}_{i}\right]-\delta_{i}=0, \quad i=1,2, \ldots, k \tag{15}\\
& \alpha_{i} C_{i} \bar{y}+(\beta-\gamma \bar{y})^{t} \bar{\lambda}_{i} C_{i}=2 v_{i} C_{i} \bar{w}_{i}, \quad i=1,2, \ldots, k \tag{16}\\
& {\left[(\beta-\gamma \bar{y}) \bar{\lambda}_{i}-\alpha_{i} \bar{p}_{i}\right]^{t} \nabla_{y y} f_{i}=0, \quad i=1,2, \ldots, k} \tag{17}\\
& \bar{x}^{t} B_{i} \bar{z}_{i}=\left(\bar{x}^{t} B_{i} \bar{x}\right)^{\frac{1}{2}}, \quad i=1,2, \ldots, k \tag{18}\\
& \beta^{t} \sum_{i=1}^{k} \bar{\lambda}_{i}\left(\nabla_{y} f_{i}-C_{i} \bar{w}_{i}+\nabla_{y y} f_{i} \bar{p}_{i}\right)=0 \tag{19}
\end{align*}
$$

$$
\begin{align*}
& \gamma \bar{y} \sum_{i=1}^{k} \bar{\lambda}_{i}\left(\nabla_{y} f_{i}-C_{i} \bar{w}_{i}+\nabla_{y y} f_{i} \bar{p}_{i}\right)=0 \tag{20}\\
& v_{i}\left(\bar{w}_{i}^{t} C_{i} \bar{w}_{i}-1\right)=0, \quad i=1,2, \ldots, k \tag{21}\\
& \delta^{t} \bar{\lambda}=0 \tag{22}\\
& \bar{x}^{t} \xi=0 \tag{23}\\
& \bar{z}_{i}^{t} B_{i} \bar{z}_{i} \leqq 1, \quad i=1,2, \ldots, k \tag{24}\\
& (\alpha, \beta, \gamma, v, \delta, \xi) \geqq 0 \tag{25}\\
& (\alpha, \beta, \gamma, v, \delta, \xi) \neq 0 \tag{26}
\end{align*}
$$

Since $\bar{\lambda}>0$ and $\delta \geqq 0$, (22) implies $\delta=0$. Consequently, (15) yields

$$
\begin{equation*}
(\beta-\gamma \bar{y})^{t}\left[\nabla_{y} f_{i}-C_{i} \bar{w}_{i}+\nabla_{y y} f_{i} \bar{p}_{i}\right]=0, \quad i=1,2, \ldots, k . \tag{27}
\end{equation*}
$$

Since $\nabla_{y y} f_{i}$ is nonsingular for $i=1,2, \ldots, k$, from (17), it follows that

$$
\begin{equation*}
(\beta-\gamma \bar{y}) \bar{\lambda}_{i}=\alpha_{i} \bar{p}_{i}, \quad i=1,2, \ldots, k \tag{28}
\end{equation*}
$$

From (14), we get

$$
\begin{aligned}
& \sum_{i=1}^{k}\left(\alpha_{i}-\gamma \bar{\lambda}_{i}\right)\left(\nabla_{y} f_{i}-C_{i} \bar{w}_{i}\right)+\sum_{i=1}^{k} \bar{\lambda}_{i} \nabla_{y y} f_{i}\left(\beta-\gamma \bar{y}-\gamma \bar{p}_{i}\right) \\
& \quad+\sum_{i=1}^{k}\left(\nabla_{y y} f_{i} \bar{p}_{i}\right)_{y}\left[(\beta-\gamma \bar{y}) \bar{\lambda}_{i}-\frac{1}{2} \alpha_{i} \bar{p}_{i}\right]=0
\end{aligned}
$$

By using (28), it follows that

$$
\begin{equation*}
\sum_{i=1}^{k}\left(\alpha_{i}-\gamma \bar{\lambda}_{i}\right)\left(\nabla_{y} f_{i}-C_{i} \bar{w}_{i}+\nabla_{y y} f_{i} \bar{p}_{i}\right)+\frac{1}{2} \sum_{i=1}^{k} \bar{\lambda}_{i}\left(\nabla_{y y} f_{i} \bar{p}_{i}\right)_{y}(\beta-\gamma \bar{y})=0 \tag{29}
\end{equation*}
$$

Premultiplying (29) by $(\beta-\gamma \bar{y})^{t}$ and using (27), we obtain

$$
(\beta-\gamma \bar{y})^{t} \sum_{i=1}^{k} \bar{\lambda}_{i}\left(\nabla_{y y} f_{i} \bar{p}_{i}\right)_{y}(\beta-\gamma \bar{y})=0,
$$

which by hypothesis (ii) implies

$$
\begin{equation*}
\beta=\gamma \bar{y} . \tag{30}
\end{equation*}
$$

Therefore, from (29), we get $\sum_{i=1}^{k}\left(\alpha_{i}-\gamma \bar{\lambda}_{i}\right)\left(\nabla_{y} f_{i}-C_{i} \bar{w}_{i}+\nabla_{y y} f_{i} \bar{p}_{i}\right)=0$, which by hypothesis (iii) yields

$$
\begin{equation*}
\alpha_{i}=\gamma \bar{\lambda}_{i}, \quad i=1,2, \ldots, k \tag{31}
\end{equation*}
$$

If $\gamma=0$, then $\alpha_{i}=0, i=1,2, \ldots, k$ and from (30), $\beta=0$. Also from (13) and (16), we get $\xi_{i}=0, v_{i}=0, i=1,2, \ldots, k$. Thus $(\alpha, \beta, \gamma, \delta, \nu, \xi)=0$, a contradiction to (26). Hence $\gamma>0$. Since $\bar{\lambda}_{i}>0, i=1,2, \ldots, k$, (31) implies $\alpha_{i}>0, i=1,2, \ldots, k$. Using (30) in (28), we get $\alpha_{i} \bar{p}_{i}=0, i=1,2, \ldots, k$, and hence $\bar{p}_{i}=0, i=1,2, \ldots, k$. Using (30) and $\bar{p}_{i}=0, i=1,2, \ldots, k$,
in (13), it follows that $\sum_{i=1}^{k} \alpha_{i}\left[\nabla_{x} f_{i}+B_{i} \bar{z}_{i}\right]=\xi$, which by (31) gives

$$
\begin{equation*}
\sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{x} f_{i}+B_{i} \bar{z}_{i}\right]=\frac{\xi}{\gamma} \geqq 0 \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{x}^{t} \sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{x} f_{i}+B_{i} \bar{z}_{i}\right]=\frac{\bar{x}^{t} \xi}{\gamma}=0 . \tag{33}
\end{equation*}
$$

Also, from (30), we have

$$
\begin{equation*}
\bar{y}=\frac{\beta}{\gamma} \geqq 0 \tag{34}
\end{equation*}
$$

Hence from (24) and (32)-(34), ($\bar{x}, \bar{y}, \bar{\lambda}, \bar{z}, \bar{r}=0$) is feasible for (MD). Now let $\frac{2 v_{i}}{\alpha_{i}}=a$. Then $a \geqq 0$ and from (16) and (30)

$$
\begin{equation*}
C_{i} \bar{y}=a C_{i} \bar{w}_{i} \tag{35}
\end{equation*}
$$

which is the condition for equality in the Schwartz inequality. Therefore

$$
\bar{y}^{t} C_{i} \bar{w}_{i}=\left(\bar{y}^{t} C_{i} \bar{y}\right)^{\frac{1}{2}}\left(\bar{w}_{i}^{t} C_{i} \bar{w}_{i}\right)^{\frac{1}{2}} .
$$

In case $\nu_{i}>0$, (21) gives $\bar{w}_{i}^{t} C_{i} \bar{w}_{i}=1$ and so $\bar{y}^{t} C_{i} \bar{w}_{i}=\left(\bar{y}^{t} C_{i} \bar{y}\right)^{\frac{1}{2}}$. In case $\nu_{i}=0$, (35) gives $C_{i} \bar{y}=0$ and so $\bar{y}^{t} C_{i} \bar{w}_{i}=\left(\bar{y}^{t} C_{i} \bar{y}\right)^{\frac{1}{2}}=0$. Thus in either case

$$
\begin{equation*}
\bar{y}^{t} C_{i} \bar{w}_{i}=\left(\bar{y}^{t} C_{i} \bar{y}\right)^{\frac{1}{2}} . \tag{36}
\end{equation*}
$$

Hence

$$
\begin{aligned}
& K_{i}(\bar{x}, \bar{y}, \bar{w}, \bar{p}=0)=f_{i}(\bar{x}, \bar{y})+\left(\bar{x}^{t} B_{i} \bar{x}\right)^{\frac{1}{2}}-\bar{y}^{t} C_{i} \bar{w}_{i} \\
& \quad=f_{i}(\bar{x}, \bar{y})-\left(\bar{y}^{t} C_{i} \bar{y}\right)^{\frac{1}{2}}+\bar{x}^{t} B \bar{z}_{i}=G_{i}(\bar{x}, \bar{y}, \bar{z}, \bar{r}=0)(\text { using (18) and (36)). }
\end{aligned}
$$

Now it follows from Theorem 3.1 that ($\bar{x}, \bar{y}, \bar{\lambda}, \bar{z}, \bar{r}=0$) is an efficient solution for (MD).
A converse duality theorem may be merely stated as its proof would run analogously to that of Theorem 3.2.

Theorem 3.3 (Converse Duality). Let f be thrice differentiable on $R^{n} \times R^{m}$ and $(\bar{u}, \bar{v}, \bar{\lambda}, \bar{z}, \bar{r})$, a weak efficient solution for (MD), and $\lambda=\bar{\lambda}$ fixed in (MP). Assume that
(i) $\nabla_{x x} f_{i}$ is nonsingular for all $i=1,2, \ldots, k$,
(ii) the matrix $\sum_{i=1}^{k} \bar{\lambda}_{i}\left(\nabla_{x x} f_{i} \bar{r}_{i}\right)_{x}$ is positive or negative definite, and
(iii) the set $\left\{\nabla_{x} f_{1}+B_{1} \bar{z}_{1}+\nabla_{x x} f_{1} \bar{r}_{1}, \nabla_{x} f_{2}+B_{2} \bar{z}_{2}+\nabla_{x x} f_{2} \bar{r}_{2}, \ldots, \nabla_{x} f_{k}+B_{k} \bar{z}_{k}+\nabla_{x x} f_{k} \bar{r}_{k}\right\}$ is linearly independent,
where $f_{i}=f_{i}(\bar{u}, \bar{v}), i=1,2, \ldots, k$. Then $(\bar{u}, \bar{v}, \bar{\lambda}, \bar{w}, \bar{p}=0)$ is feasible for (MP), and the two objectives have the same values. Also, if the hypotheses of Theorem 3.1 are satisfied for all feasible solutions of (MP) and (MD), then ($\bar{u}, \bar{v}, \bar{\lambda}, \bar{w}, \bar{p}=0$) is an efficient solution for (MP).

4. Special cases

(i) If $B_{i}=C_{i}=0, i=1,2, \ldots, k$, then (MP) and (MD) reduce to the second order multiobjective symmetric dual program studied by Suneja et al. [16] with the omission of non-negativity constraints from (MP) and (MD). If in addition $p=r=0$, and $k=1$, then we get the first order symmetric dual programs of Chandra et al. [4].
(ii) If we set $p=r=0$, in (MP) and (MD), then we obtain a pair of first order symmetric dual nondifferentiable multiobjective programs considered by Mond et al. [15].

References

[1] I. Ahmad, Z. Husain, Nondifferentiable second order symmetric duality, Asia-Pacific J. Oper. Res. 22 (2005) (in press).
[2] C.R. Bector, S. Chandra, Generalized bonvexity and higher order duality for fractional programming, Opsearch 24 (1987) 143-154.
[3] S. Chandra, B.D. Craven, B. Mond, Generalized concavity and duality with a square root term, Optimization 16 (1985) 653-662.
[4] S. Chandra, A. Goyal, I. Husain, On symmetric duality in mathematical programming with F-convexity, Optimization 43 (1998) 1-18.
[5] S. Chandra, I. Husain, Nondifferentiable symmetric dual programs, Bull. Austral. Math. Soc. 24 (1981) 295-307.
[6] S. Chandra, D. Prasad, Symmetric duality in multiobjective programming, J. Austral. Math. Soc. (Ser. B) 35 (1993) 198-206.
[7] B.D. Craven, Lagrangian conditions and quasiduality, Bull. Austral. Math. Soc. 16 (1977) 325-339.
[8] W.S. Dorn, A symmetric dual theorem for quadratic programs, J. Oper. Res. Soc. Japan 2 (1960) 93-97.
[9] T.R. Gulati, I. Ahmad, I. Husain, Second order symmetric duality with generalized convexity, Opsearch 38 (2001) 210-222.
[10] T.R. Gulati, I. Husain, A. Ahmed, Multiobjective symmetric duality with invexity, Bull. Austral. Math. Soc. 56 (1997) 25-36.
[11] D.S. Kim, Y.B. Yun, H. Kuk, Second order symmetric and self duality in multiobjective programming, Appl. Math. Lett. 10 (1997) 17-22.
[12] O.L. Mangasarian, Second and higher order duality in nonlinear programming, J. Math. Anal. Appl. 51 (1975) 607-620.
[13] S.K. Mishra, Second order symmetric duality in mathematical programming with F-convexity, European J. Oper. Res. 127 (2000) 507-518.
[14] B. Mond, Second order duality for nonlinear programs, Opsearch 11 (1974) 90-99.
[15] B. Mond, I. Husain, M.V. Durga Prasad, Duality for a class of nondifferentiable multiobjective programming, Util. Math. 39 (1991) 3-19.
[16] S.K. Suneja, C.S. Lalitha, S. Khurana, Second order symmetric duality in multiobjective programming, European. J. Oper. Res. 144 (2003) 492-500.
[17] P.S. Unger, A.P. Hunter Jr., The dual of the dual as a linear approximation of the primal, Int. J. Syst. Sci. 12 (1974) 1119-1130.
[18] T. Weir, B. Mond, Symmetric and self duality in multiobjective programming, Asia-Pacific J. Oper. Res. 5 (1988) 124-133.
[19] X.M. Yang, S.H. Hou, Second order symmetric duality in multiobjective programming, Appl. Math. Lett. 14 (2001) 587-592.

[^0]: * Corresponding author.

 E-mail address: iahmad@ postmark.net (I. Ahmad).

