
Applied Mathematics and Computation 176 (2006) 545–551

www.elsevier.com/locate/amc
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Abstract

A Mond–Weir type dual for a class of nondifferentiable minimax fractional programming problem is considered.
Appropriate duality results are proved involving (F,a,q,d)-pseudoconvex functions.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Fractional programming is an interesting subject appeared in many types of optimization problems. For
example, it can be used in engineering and economics to minimize a ratio of functions between a given period
of time and a utilized resource in order to measure the efficiency or productivity of a system. In these types of
problems the objective function is usually given as a ratio of functions in fractional programming form (see
Stancu-Minasian [16]).

Optimization problems with minimax type functions arise in the design of electronic circuits, however mini-
max fractional problems appear in the formulation of discrete and continuous rational approximation problems
with respect to the Chebyshev norm [3], in continuous rational games [14], in multiobjective programming [15],
in engineering design as well as in some portfolio selection problems discussed by Bajona-xandri and Martinez-
legaz [2].

Minimax mathematical programming has been of much interest in the recent past [1,4,5,11,13,18–20].
Schmitendorf [13] established necessary and sufficient optimality conditions for minimax problem. Tanimoto
[17] applied these optimality conditions to define a dual problem and derived duality theorems, which were
extended for the fractional analogue of generalized minimax problem by Yadav and Mukherjee [19].

Motivated by various concepts of generalized convexity, Liang et al. [8,9] introduced a unified formulation
of generalized convexity, which was called (F,a,q,d)-convexity and obtained some corresponding optimality
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conditions and duality results for the single objective fractional problems and multiobjective problems.
Recently, Liang and Shi [10] obtained sufficient conditions and duality theorems for minimax fractional prob-
lem under (F,a,q,d)-convexity. Lai et al. [7] derived necessary and sufficient conditions for nondifferentiable
minimax fractional problem with generalized convexity and applied these optimality conditions to construct
one parametric dual model and also discussed duality theorems. Lai and Lee [6] obtained duality theorems for
two parametric-free dual models of nondifferentiable minimax fractional problem involving generalized con-
vexity assumptions. Recently, Mishra et al. [12] established duality results for one parametric and two para-
metric-free dual models of nondifferentiable minimax fractional programming problem under generalized
univexity.

The optimization problem considered in this paper is the nondifferentiable minimax fractional program-
ming problem which consists of minimizing the supremum of ratio of functions involving square roots. Taking
motivation from the work of Liang et al. [8], Lai et al. [7] and Lai and Lee [6], we consider a Mond–Weir type
dual model for this problem and establish weak, strong and strict converse duality theorems with (F,a,q,d)-
pseudoconvexity. This work improves and generalizes some existing results on minimax fractional
programming.

2. Notations and preliminary results

Let Rn be the n-dimensional Euclidean space and X an open set in Rn.

Definition 2.1. A functional F : X · X · Rn! R is said to be sublinear if "x, �x 2 X

(i) F ðx;�x; a1 þ a2Þ 6 F ðx;�x; a1Þ þ F ðx;�x; a2Þ 8a1; a2 2 Rn,
(ii) F ðx;�x; baÞ ¼ bF ðx;�x; aÞ 8b 2 Rþ and "a 2 Rn.

By (ii), it is clear that F ðx;�x; 0Þ ¼ 0.

Definition 2.2 [8,9]. Given an open set X � Rn, a number q 2 R, and two functions a : X · X! R+n{0} and
d(Æ,Æ) : X · X! R, a differentiable function f over X is said to be (F,a,q,d)-convex at �x, if for any x 2 X,
F : X · X · Rn! R is sublinear, and f(x) satisfies the following condition:
fðxÞ � fð�xÞP F ðx;�x; aðx;�xÞrfð�xÞÞ þ qd2ðx;�xÞ.
Definition 2.3. Given an open set X � Rn, a number q 2 R, and two functions a : X · X! R+n{0} and
d(Æ,Æ) : X · X! R, a differentiable function f over X is said to be (F,a,q,d)-pseudoconvex at �x, if for any
x 2 X, there exists a sublinear functional F : X · X · Rn! R such that
fðxÞ < fð�xÞ ) F ðx;�x; aðx;�xÞrfð�xÞÞ < �qd2ðx;�xÞ.
Further, f is said to be strictly (F,a,q,d)-pseudoconvex at �x, if for any x 2 X, there exists a sublinear functional
F : X · X · Rn! R such that
F ðx;�x; aðx;�xÞrfð�xÞÞP �qd2ðx;�xÞ ) fðxÞ > fð�xÞ.
We now consider the following nondifferentiable minimax fractional programming problem:
ðP Þ min
x2Rn

sup
y2Y

f ðx; yÞ þ ðxtBxÞ1=2

hðx; yÞ � ðxtDxÞ1=2
;

subject to gðxÞ 6 0; x 2 X ;
where Y is a compact subset of Rm, f, h : Rn · Rm! R, are C1 on Rn · Rm and g : Rn! Rp is C1 on Rn. B and
D are n · n positive semidefinite matrices.
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Let S = {x 2 X : g(x) 6 0} denote the set of all feasible solutions of (P). For each (x,y) 2 Rn · Rm, we define
/ðx; yÞ ¼ f ðx; yÞ þ ðxtBxÞ1=2

hðx; yÞ � ðxtDxÞ1=2
;

such that for each (x,y) 2 S · Y, f(x,y) + (xtBx)1/2 P 0 and h(x,y)�(xtDx)1/2 > 0. For each x 2 S, we define
J(x) = {j 2 J : gj(x) = 0}, where J = {1,2, . . . ,p}
Y ðxÞ ¼ y 2 Y :
f ðx; yÞ þ ðxtBxÞ1=2

hðx; yÞ � ðxtDxÞ1=2
¼ sup

z2Y

f ðx; zÞ þ ðxtBxÞ1=2

hðx; zÞ � ðxtDxÞ1=2

( )
;

KðxÞ ¼
(
ðs; t; ~yÞ 2 N � Rs

þ � Rms : 1 6 s 6 nþ 1; t ¼ ðt1; t2; . . . ; tsÞ 2 Rs
þ

with
Xs

i¼1

ti ¼ 1; ~y ¼ ð�y1; �y2; . . . ; �ysÞ with �yi 2 Y ðxÞði ¼ 1; 2; . . . ; sÞ
)

.

Since f and h are continuously differentiable and Y is compact in Rm, it follows that for each x* 2 S,
Y(x*) 5 ;, and for any �yi 2 Y ðx�Þ, we have a positive constant
k0 ¼ /ðx�; �yiÞ ¼
f ðx�; �yiÞ þ ðx�tBx�Þ1=2

hðx�; �yiÞ � ðx�tDx�Þ1=2
.

We shall need the following generalized Schwartz inequality.
Let B be a positive semidefinite matrix of order n. Then for all x, w 2 Rn,
xtBw 6 ðxtBxÞ
1
2ðwtBwÞ

1
2. ð1Þ
We observe that equality holds if Bx = kBw for some k P 0. Evidently, if ðwtBwÞ
1
2 6 1, we have
xtBw 6 ðxtBxÞ
1
2.
If the functions f, g and h in problem (P) are continuously differentiable with respect to x 2 Rn, then Lai
et al. [7] derived the following necessary conditions for optimality of (P). In what follows $ stands for gradient
vector with respect to x.

Theorem 2.1 (Necessary conditions). If x* is a solution of problem (P) satisfying x*tBx* > 0, x*tDx* > 0, and

$gj(x*), j 2 J(x*) are linearly independent, then there exist ðs; t�; �yÞ 2 Kðx�Þ, k0 2 R+, w, v 2 Rn, and l� 2 Rp
þ such

that
Xs

i¼1

t�i frf ðx�; �yiÞ þ Bw� k0ðrhðx�; �yiÞ � DvÞg þ r
Xp

j¼1

l�j gjðx�Þ ¼ 0; ð2Þ

f ðx�; �yiÞ þ ðx�tBx�Þ
1
2 � k0ðhðx�; �yiÞ � ðx�tDx�Þ

1
2Þ ¼ 0; i ¼ 1; 2; . . . ; s; ð3ÞXp

j¼1

l�j gjðx�Þ ¼ 0; ð4Þ

t�i P 0 ði ¼ 1; 2; . . . ; sÞ;
Xs

i¼1

t�i ¼ 1; ð5Þ

wtBw 6 1; vtDv 6 1;

ðx�tBx�Þ1=2 ¼ x�tBw;

ðx�tDx�Þ1=2 ¼ x�tDv.

8><
>: ð6Þ
Remark. In the above theorem, both matrices B and D are positive semidefinite at the solution x*. If one of
(x*tBx*) and (x*tDx*) is zero, or both B and D are singular, then for ðs; t�; �yÞ 2 Kðx�Þ, we can take a set Z�yðx�Þ
as defined in [6] by



Z�yðx�Þ ¼ fz 2 Rn : ztrgjðx�Þ 6 0; j 2 Jðx�Þ satisfying one of the following conditionsg:
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(i) x*tBx* > 0, x*tDx* = 0
) zt
Xs

i¼1

t�i rf ðx�; �yiÞ þ
Bx�

ðx�tBx�Þ
1
2

� k0rhðx�; �yiÞ
( ) !

þ ðztðk2
0DÞzÞ

1
2 < 0;
(ii) x*tBx* = 0, x*tDx* > 0
) zt
Xs

i¼1

t�i rf ðx�; �yiÞ � k0 rhðx�; �yiÞ �
Dx�

x�tDx�ð Þ
1
2

 !( ) !
þ ðztBzÞ

1
2 < 0;
(iii) x*tBx* = 0, x*tDx* = 0
) zt
Xs

i¼1

t�i frf ðx�; �yiÞ � k0rhðx�; �yiÞg
 !

þ ðztðk2
0DÞzÞ

1
2 þ ðztBzÞ

1
2 < 0.
If we insert the condition Z�yðx�Þ ¼ ; in Theorem 2.1, then the result of Theorem 2.1 still holds.
3. Duality model

In this section, we first restate Theorem 2.1, in the form of following theorem, which can be proved on the
lines of Theorem 4 in [6].
Theorem 3.1 (Necessary conditions). If x* is a solution of problem (P). Assuming Z�yðx�Þ to be empty, there exist

ðs; t�; �yÞ 2 Kðx�Þ, w, v 2 Rn and l� 2 Rp
þ satisfying
r
Ps

i¼1t�i ff ðx�; �yiÞ þ x�tBwg þ
Pp

j¼1l
�
j gjðx�ÞPs

i¼1t�i fhðx�; �yiÞ � x�tDvg

� �
¼ 0; ð7Þ

Xp

j¼1

l�j gjðx�Þ ¼ 0; ð8Þ

t�i 2 Rs
þði ¼ 1; 2; . . . ; sÞ;

Xs

i¼1

t�i ¼ 1; ð9Þ

wtBw 6 1; ðx�tBx�Þ1=2 ¼ x�tBw; ð10Þ

vtDv 6 1; ðx�tDx�Þ1=2 ¼ x�tDv. ð11Þ

Theorem 3.1 can be employed to construct the following Mond–Weir type dual as follows:
ðDÞ max
ðs;t�;�yÞ2KðzÞ

sup
ðz;l;v;wÞ2Hðs;t�;�yÞ

Ps
i¼1t�i ff ðz; �yiÞ þ ztBwg þ

Pp
j¼1ljgjðzÞPs

i¼1t�i fhðz; �yiÞ � ztDvg ;
where Hðs; t�; �yÞ denote the set of all ðz; l;w; vÞ 2 Rn � Rp
þ � Rn � Rn satisfying
r
Ps

i¼1t�i ff ðz; �yiÞ þ ztBwg þ
Pp

j¼1ljgjðzÞPs
i¼1t�i fhðz; �yiÞ � ztDvg

� �
¼ 0; ð12Þ

wtBw 6 1; ðztBzÞ1=2 ¼ ztBw;

vtDv 6 1; ðztDzÞ1=2 ¼ ztDv.

(
ð13Þ
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If the set Hðs; t�; �yÞ is empty, we define supremum over it to be �1. For convenience, we use the notation:
wð�Þ ¼
Xs

i¼1

t�i fhðz; �yiÞ � ztDv

" # Xs

i¼1

t�i ff ð�; �yiÞ þ ð�Þ
tBwg þ

Xp

j¼1

ljgjð�Þ
" #

�
Xs

i¼1

t�i ff ðz; �yiÞ þ ztBwg þ
Xp

j¼1

ljgjðzÞ
" # Xs

i¼1

t�i fhð�; �yiÞ � ð�Þ
tDvg

" #
.

Suppose that
Xs

i¼1

t�i ff ðz; �yiÞ þ ztBwg þ
Xp

j¼1

ljgjðzÞP 0 and
Xs

i¼1

t�i fhðz; �yiÞ � ðzÞ
tDvg > 0;
for all ðs; t�; �yÞ 2 KðzÞ, ðz; l;w; vÞ 2 Hðs; t�; �yÞ. The following weak duality theorem can be proved.

Theorem 3.2 (Weak duality). Suppose that x and ðz; l; v;w; s; t; �yÞ are respectively the feasible solutions for (P)

and (D). Also assume that w(Æ) is (F,a,q, d)-pseudoconvex at z and the inequality
q
aðx; zÞP 0
holds, then
sup
y2Y

f ðx; yÞ þ ðxtBxÞ1=2

hðx; yÞ � ðxtDxÞ1=2
P

Ps
i¼1tiff ðz; �yiÞ þ ztBwg þ

Pp
j¼1ljgjðzÞPs

i¼1tifhðz; �yiÞ � ztDvg .
Proof. By means of a contradiction, suppose that
sup
y2Y

f ðx; yÞ þ ðxtBxÞ1=2

hðx; yÞ � ðxtDxÞ1=2
<

Ps
i¼1tiff ðz; �yiÞ þ ztBwg þ

Pp
j¼1ljgjðzÞPs

i¼1tifhðz; �yiÞ � ztDvg ;
for all y 2 Y. If we replace y by �yi in the above inequality and sum up after multiplying by ti, then we
have
Xs

i¼1

tiff ðx; �yiÞ þ ðxtBxÞ1=2g
" # Xs

i¼1

tifhðz; �yiÞ � ztDvg
" #

<
Xs

i¼1

tiff ðz; �yiÞ þ ztBwg þ
Xp

j¼1

ljgjðzÞ
" # Xs

i¼1

tifhðx; �yiÞ � ðxtDxÞ1=2g
" #

.

Using the generalized Schwartz inequality and (13), we get
/ðxÞ 6
Xs

i¼1

tifhðz; �yiÞ � ztDvg
" # Xs

i¼1

tiff ðx; �yiÞ þ ðxtBxÞ
1
2g þ

Xp

j¼1

ljgjðxÞ
" #

�
Xs

i¼1

tiff ðz; �yiÞ þ ztBwg þ
Xp

j¼1

ljgjðzÞ
" # Xs

i¼1

tifhðx; �yiÞ � ðxtDxÞ
1
2g

" #

<
Xp

j¼1

ljgjðxÞ �
Xs

i¼1

tifhðz; �yiÞ � ztDvg.
Since
Ps

i¼1tifhðz; �yiÞ � ztDvg > 0 and
Pp

j¼1ljgjðxÞ 6 0, it follows that
wðxÞ < 0 ¼ wðzÞ.



550 I. Ahmad, Z. Husain / Applied Mathematics and Computation 176 (2006) 545–551
As w(Æ) is (F,a,q,d)-pseudoconvex at z. Therefore, F(x,z;a(x,z)$w(z)) < � qd2(x,z), that is
F x; z; aðx; zÞ
Xs

i¼1

tifhðz; �yiÞ � ztDv

" #
r
Xs

i¼1

tiff ðz; �yiÞ þ ztBwg þ
Xp

j¼1

ljgjðzÞ
" #( 

�
Xs

i¼1

tiff ðz; �yiÞ þ ztBwg þ
Xp

j¼1

ljgjðzÞ
" #

r
Xs

i¼1

tifhðz; �yiÞ � ztDvg
" #)!

< �qd2ðx; zÞ.
On multiplying the above inequality by 1

aðx;zÞ
Ps

i¼1
tifhðz;�yiÞ�ztDvg½ �2

and using the sublinearity of F, we have
F x; z;r
Ps

i¼1tiff ðz; �yiÞ þ ztBwg þ
Pp

j¼1ljgjðzÞPs
i¼1tifhðz; �yiÞ � ztDvg

� �� �
< � qd2ðx; zÞ

aðx; zÞ
Ps

i¼1tifhðz; �yiÞ � ztDvg
� �2

.

Using the fact that q
aðx;zÞ P 0, we have
F x; z;r
Ps

i¼1tiff ðz; �yiÞ þ ztBwg þ
Pp

j¼1ljgjðzÞPs
i¼1tifhðz; �yiÞ � ztDvg

� �� �
< 0. ð14Þ
In the light of (12), the inequality (14) contradicts F(x,z; 0) = 0. h

Theorem 3.3 (Strong duality). Suppose that �x is optimal for (P) and rgjð�xÞ, j 2 Jð�xÞ is linearly independent.

Then there exist ð�s;�t; �yHÞ 2 Kð�xÞ and ð�x; �l;�v; �wÞ 2 Hð�s;�t; �yHÞ such that ð�x; �l;�v; �w;�s;�t; �yHÞ is feasible for (D). Fur-

ther, if the weak duality (Theorem 3.2) holds for all feasible ðz; l; v;w; s; t; �yÞ of (D), then ð�x; �l;�v; �w;�s;�t; �yHÞ is opti-

mal for (D) and the two objectives have the same extreme values.

Proof. Since �x is an optimal solution for (P) andrgjð�xÞ, j 2 Jð�xÞ is linearly independent, then by Theorem 3.1,
there exist ð�s;�t; �yHÞ 2 Kð�xÞ and ð�x; �l;�v; �wÞ 2 Hð�s;�t; �yHÞ such that ð�x; �l;�v; �w;�s;�t; �yHÞ is feasible for (D) and the
two objective values are equal. The optimality of ð�x; �l;�v; �w;�s;�t; �yHÞ for (P) thus follows from weak duality
(Theorem 3.2). h

Theorem 3.4 (Strict converse duality). Let �x and ð�z; �l;�v; �w;�s;�t; �y�Þ be optimal solutions for (P) and (D) respec-

tively. Also suppose that w(Æ) is strictly (F,a,q, d)-pseudoconvex at �z, for all ð�s;�t; �y�Þ 2 Kð�xÞ, ð�z; �l; �w;�vÞ 2
Hð�s;�t; �y�Þ, and the inequality
q
að�x;�zÞP 0
holds, and rgjð�xÞ, j 2 Jð�xÞ is linearly independent. Then �z ¼ �x; that is, �z is optimal for (P).

Proof. We shall assume that �x 6¼ �z and exhibit a contradiction. Since ð�z; �l;�v; �w;�s;�t; �y�Þ is feasible for (D), it
follows that0 1
r
P�s

i¼1
�tiff ð�z; �y�i Þ þ �ztB�wg þ

Pp
j¼1�ljgjð�zÞP�s

i¼1

�tifhð�z; �y�i Þ � �ztD�vg

BB@ CCA ¼ 0.
The above inequality along with the sublinearity of F and q
að�x;�zÞ P 0 implies
F �x;�z;r
P�s

i¼1
�tiff ð�z; �y�i Þ þ �ztB�wg þ

Pp
j¼1�ljgjð�zÞP�s

i¼1
�tifhð�z; �y�i Þ � �ztD�vg

 ! !
¼ 0 P � qd2ð�x;�zÞ

að�x;�zÞ ;
which together with the sublinearity of F and að�x;�zÞ > 0 yields
F �x;�z; að�x;�zÞr
P�s

i¼1
�tiff ð�z; �y�i Þ þ �ztB�wg þ

Pp
j¼1�ljgjð�zÞP�s

i¼1
�tifhð�z; �y�i Þ � �ztD�vg

 ! !
P �qd2ð�x;�zÞ.
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Using strict (F,a,q,d)-pseudoconvexity of w(Æ), we obtain
wð�xÞ > wð�zÞ.

Since wð�zÞ ¼ 0, then we have wð�xÞ > 0, that is
X�s

i¼1

�tifhð�z; �y�i Þ � �ztD�vg
" # X�s

i¼1

�tiff ð�x; �y�i Þ þ ð�xtB�wÞg þ
Xp

j¼1

�ljgjð�xÞ
" #

>
X�s

i¼1

�tiff ð�z; �y�i Þ þ �ztB�wg þ
Xp

j¼1

�ljgjð�zÞ
" # X�s

i¼1

�tifhð�x; �y�i Þ � ð�xtD�vÞg
" #

. ð15Þ
The relations (1), (13), (15) and
Pp

j¼1�ljgjð�xÞ 6 0 imply
sup
y2Y

f ð�x; yÞ þ ð�xtB�xÞ1=2

hð�x; yÞ � ð�xtD�xÞ1=2
>

P�s
i¼1

�tiff ð�z; �y�i Þ þ �ztB�wg þ
Pp

j¼1�ljgjð�zÞP�s
i¼1

�tifhð�z; �y�i Þ � �ztD�vg
. ð16Þ
Since �x is optimal for (P) and gjð�xÞ, j 2 Jð�xÞ is linearly independent, by strong duality (Theorem 3.3), there
exist ð�s;�t; �y�Þ 2 Kð�xÞ and ð�x; �l;�v; �wÞ 2 Hð�s;�t; �y�Þ so that ð�x; �l;�v; �w;�s;�t; �y�Þ turns to be an optimal solution of
(D) and
sup
y2Y

f ð�x; yÞ þ ð�xtB�xÞ1=2

hð�x; yÞ � ð�xtD�xÞ1=2
¼
P�s

i¼1
�tiff ð�z; �y�i Þ þ �ztB�wg þ

Pp
j¼1�ljgjð�zÞP�s

i¼1
�tifhð�z; �y�i Þ � �ztD�vg

;

which contradicts the fact of (16). Hence �x ¼ �z. h
References

[1] I. Ahmad, Optimality conditions and duality in fractional minimax programming involving generalized q-invexity, Inter. J. Manag.
Sys. 19 (2003) 165–180.

[2] C. Bajona-xandri, J.E. Martinez-legaz, Lower subdifferentiability in minimax fractional programming, Optimization (1998).
[3] I. Barrodale, Best rational approximation and strict quasiconvexity, SIAM J. Numer. Anal. 10 (1973) 8–12.
[4] C.R. Bector, B.L. Bhatia, Sufficient optimality and duality for a minimax problem, Utilitas Math. 27 (1985) 229–247.
[5] S. Chandra, V. Kumar, Duality in fractional minimax programming, J. Aust. Math. Soc. Ser. A 58 (1995) 376–386.
[6] H.C. Lai, J.C. Lee, On duality theorems for a nondifferentiable minimax fractional programming, J. Comput. Appl. Math. 146 (2002)

115–126.
[7] H.C. Lai, J.C. Liu, K. Tanaka, Necessary and sufficient conditions for minimax fractional programming, J. Math. Anal. Appl. 230

(1999) 311–328.
[8] Z.A. Liang, H.X. Huang, P.M. Pardalos, Optimality conditions and duality for a class of nonlinear fractional programming

problems, J. Optim. Theory Appl. 110 (2001) 611–619.
[9] Z.A. Liang, H.X. Huang, P.M. Pardalos, Efficiency conditions and duality for a class of multiobjective programming problems,

J. Global Optim. 27 (2003) 1–25.
[10] Z.A. Liang, Z.W. Shi, Optimality conditions and duality for a minimax fractional programming with generalized convexity, J. Math.

Anal. Appl. 277 (2003) 474–488.
[11] J.C. Liu, C.S. Wu, On minimax fractional optimality conditions with (F,q)-convexity, J. Math. Anal. Appl. 219 (1998) 36–51.
[12] S.K. Mishra, S.Y. Wang, K.K. Lai, J.M. Shi, Nondifferentiable minimax fractional programming under generalized univexity,

J. Comput. Appl. Math. 158 (2003) 379–395.
[13] W.E. Schmitendorf, Necessary conditions and sufficient conditions for static minimax problems, J. Math. Anal. Appl. 57 (1977) 683–

693.
[14] R.G. Schroeder, Linear programming solutions to ratio games, Oper. Res. 18 (1970) 300–305.
[15] A.L. Soyster, B. Lev, D. Loof, Conservative linear programming with mixed multiple objectives, Omega 5 (1977) 193–205.
[16] I.M. Stancu-Minasian, Fractional Programming: Theory, Methods and Applications, Kluwer, Dordrecht, 1997.
[17] S. Tanimoto, Duality for a class of nondifferentiable mathematical programming problems, J. Math. Anal. Appl. 79 (1981) 283–294.
[18] T. Weir, Pseudoconvex minimax programming, Utilitas Math. 42 (1992) 234–240.
[19] S.R. Yadav, R.N. Mukherjee, Duality for fractional minimax programming problems, J. Aust. Math. Soc. Ser. B 31 (1990) 484–492.
[20] G.J. Zalmai, Optimality criteria and duality for a class of minimax programming problems with generalized invexity conditions,

Utilitas Math. 32 (1987) 35–57.


	Duality in nondifferentiable minimax fractional programming with generalized convexity
	Introduction
	Notations and preliminary results
	Duality model
	References


