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Abstract

A class of second order (F,a,q,d)-convex functions and their generalizations is intro-
duced. Using the assumptions on the functions involved, weak, strong and strict
converse duality theorems are established for a second order Mond–Weir type multi-
obtive dual.
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1. Introduction

The importance of convex functions is well known in optimization theory.
But for many mathematical models used in decision sciences, economics, man-
agement sciences, stochastics, applied mathematics and engineering, the notion
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of convexity does no longer suffice. So it is possible to generalize the notion of
convexity and to extend the validity of results to larger classes of optimization
problems. Consequently, various generalizations of convex functions have
been introduced in the literature. More specifically, the concept of (F,q)-con-
vexity was introduced by Preda [13], an extension of F-convexity defined by
Hanson and Mond [6] and q-convexity given by Vial [14]. Gulati and Islam
[5] and Ahmad [2] established optimality conditions and duality results for
multiobjective programming problems involving F-convexity and (F,q)-con-
vexity assumptions, respectively.

Duality theory has been of much interest and many contributions [1,3,4,7,9–
11,16] have been made to its development. Mangasarian [10] first formulated
the second order dual for a nonlinear programming problem and established
duality results under somewhat involved assumptions. Mond [11] reproved sec-
ond order duality theorems under simpler assumptions than those previously
given by Mangasarian [10], and showed that the second order dual has com-
putational advantages over the first order dual. Recently, Yang et al. [15] for-
mulated several second order duals for scalar programming problem and
discussed duality results involving generalized F-convex functions.

Zhang and Mond [16] extended the class of (F,q)-convex functions to sec-
ond order (F,q)-convex functions and obtained duality results for Mangasar-
ian type, Mond–Weir type and general Mond–Weir type multiobjective dual
problems. Recently, Aghezzaf [1] formulated a mixed type dual for multiobjec-
tive programming problem and discussed various duality results by defining
new classes of generalized second order (F,q)-convexity for multiobjective
functions.

Motivated by various concepts of generalized convexity, Liang et al. [8,9]
introduced a unified formulation of generalized convexity, called (F,a,q,d)-
convexity and obtained some optimality conditions and duality results for
the single objective fractional problems and multiobjective problems.

In this paper, motivated by Liang et al. [8] and Aghezzaf [1], we introduce
second order (F,a,q,d)-convex functions and their generalizations. These con-
cepts are then used to develop weak, strong and strict converse duality theo-
rems for second order Mond–Weir type multiobjective dual.
2. Notations and preliminaries

Throughout the paper, following convention for vectors in Rn will be fol-
lowed: x = y if and only if xi = yi, i = 1,2, . . . ,n, x � y if and only if x = y

and x 5 y, x > y if and only if xi > yi, i = 1,2, . . . ,n.
The problem to be considered here is the following multiobjective nonlinear

programming problem:
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ðPÞ Minimize f ðxÞ
subject to gðxÞ50; x 2 X ; ð1Þ

where f = (f1, f2, . . . , fk) :X # Rk, g = (g1,g2, . . . ,gm) :X # Rm are assumed to be
twice differentiable functions over X, an open subset of Rn.

Definition 1. A feasible point �x is said to be an efficient solution of the vector
minimum problem (P) if there exists no other feasible point x such that

f ðxÞ � f ð�xÞ.
In the sequel, we require the following definition of sublinear functional:
Definition 2. A functional F :X · X · Rn # R is said to be sublinear in its third
component, if for all x;�x 2 X

(i) F ðx;�x; aþ bÞ5F ðx;�x; aÞ þ F ðx;�x; bÞ, "a,b 2 Rn,
(ii) F ðx;�x; baÞ ¼ bF ðx;�x; aÞ, "b 2 R, b = 0, and "a 2 Rn.

Let F be sublinear and the function f = (f1, f2, . . . , fk) :X # Rk be differentia-
ble at �x 2 X and q = (q1,q2, . . . ,qk) 2 Rk.

Definition 3. A twice differentiable function fi over X is said to be second order
(F,a,qi,d)-convex at �x on X, if for all x 2 X, there exist vector p 2 Rn, a real
valued function a :X · X # R+n{0}, a real valued function d(Æ, Æ) :X · X # R

and a real number qi such that

fiðxÞ� fið�xÞþ
1

2
ptr2fið�xÞp=F x;�x;aðx;�xÞ rfið�xÞþr2fið�xÞp

� �� �
þ qid

2ðx;�xÞ.

A twice differentiable vector function f :X # Rk is said to be second order
(F,a,q,d)-convex at �x, if each of its components fi is second order (F,a,qi,d)-
convex at �x.
Definition 4. A twice differentiable function fi over X is said to be second order
(F,a,qi,d)-pseudoconvex at �x on X, if for all x 2 X, there exist vector p 2 Rn, a
real valued function a:X · X # R+n{0}, a real valued function
d(Æ, Æ) :X · X # R and a real number qi such that

fiðxÞ < fið�xÞ �
1

2
ptr2fið�xÞp

) F x;�x; aðx;�xÞ rfið�xÞ þ r2fið�xÞp
� �� �

< �qid
2ðx;�xÞ.

A twice differentiable vector function f :X # Rk is said to be second order
(F,a,q,d)-pseudoconvex at �x, if each of its components fi is second order
(F,a,qi,d)-pseudoconvex at �x.
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Definition 5. A twice differentiable function fi over X is said to be strictly
second order (F,a,qi,d)-pseudoconvex at �x on X, if for all x 2 X, there exist
vector p 2 Rn, a real valued function a:X · X # R+n{0}, a real valued function
d(Æ, Æ):X · X # R and a real number qi such that

F ðx;�x; aðx;�xÞfrfið�xÞ þ r2fið�xÞpgÞ=� qid
2ðx;�xÞ

) f iðxÞ > fið�xÞ �
1

2
ptr2fið�xÞp;

or equivalently

fiðxÞ5fið�xÞ �
1

2
ptr2fið�xÞp

) F x;�x; aðx;�xÞ rfið�xÞ þ r2fið�xÞp
� �� �

< �qid
2ðx;�xÞ.

A twice differentiable vector function f :X # Rk is said to be strictly second
order (F,a,q,d)-pseudoconvex at �x, if each of its components fi is strictly sec-
ond order (F,a,qi,d)-pseudoconvex at �x.
Definition 6. A twice differentiable function fi over X is said to be second order
(F,a,qi,d)-quasiconvex at �x on X, if for all x 2 X, there exist vector p 2 Rn, a
real valued function a :X · X # R+n{0}, a real valued function
d(Æ, Æ) :X · X # R and a real number qi such that

fiðxÞ5fið�xÞ �
1

2
ptr2fið�xÞp

) F x;�x; aðx;�xÞ rfið�xÞ þ r2fið�xÞp
� �� �

5� qid
2ðx;�xÞ.

A twice differentiable vector function f :X # Rk is said to be second order
(F,a,q,d)-quasiconvex at �x, if each of its components fi is second order
(F,a,qi,d)-quasiconvex at �x.
Definition 7. A twice differentiable vector function f over X is said to be strong
second order (F,a,q,d)-pseudoconvex at �x on X, if for all x 2 X, there exist
vector p 2 Rn, a real valued function a :X · X # R+n{0}, a real valued function
d(Æ, Æ):X · X # R and a vector q 2 Rk such that

f ðxÞ � f ð�xÞ � 1

2
ptr2f ð�xÞp

) F x;�x; aðx;�xÞ rf ð�xÞ þ r2f ð�xÞp
� �� �

� �qd2ðx;�xÞ.
The following convention will be followed. If f is an k-dimensional vector

function, then F x;�x;rf ð�xÞ þ r2f ð�xÞp
� �

denotes the vector of components
F x;�x;rf1ð�xÞ þ r2f1ð�xÞp
� �

; . . . ; F x;�x;rfkð�xÞ þ r2fkð�xÞp
� �

.

Remark 1. Let aðx;�xÞ ¼ 1. Then second order (F,a,q,d)-convexity becomes
the second order (F,q)-convexity introduced by Zhang and Mond [16]. In
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addition, if we set second order term equal to zero, i.e., p = 0, it reduces to
(F,q)-convexity [2,13].
Example. Consider the function f :X (= R+)! R such that f(x) = x2 � 2x. If,
we define the functions

F ðx;�x; aÞ ¼ aðx� �xÞ � 4x;

dðx;�xÞ ¼ x� �x;

aðx;�xÞ ¼ xþ �xþ 1

2
;

then for q = 0, f is second order (F,a,q,d)-convex at �x ¼ 0 with respect to p,
�1 < p 5 1.

In order to prove the strong duality theorem, we need the following Kuhn–
Tucker type necessary conditions [7].

Theorem 1 (Kuhn–Tucker type necessary conditions). Assume that x* is an

efficient solution for (P) at which the Kuhn–Tucker constraint qualification is

satisfied. Then there exist k* 2 Rk and y* 2 Rm, such that

k�trf ðx�Þ þ y�trgðx�Þ ¼ 0;

y�tgðx�Þ ¼ 0;

y�=0;

k� � 0.
3. Second order Mond–Weir type duality

In this section, we consider the following Mond–Weir type second order
dual associated with multiobjective problem (P) and establish weak, strong
and strict converse duality theorems under generalized second order
(F,a,q,d)-convexity:

ðMDÞ Maximize f ðuÞ � 1

2
ptr2f ðuÞp

subject to rktf ðuÞ þ r2ktf ðuÞp þrytgðuÞ þ r2ytgðuÞp ¼ 0;

ð2Þ

ytgðuÞ � 1

2
ptr2ytgðuÞp=0; ð3Þ

y=0; ð4Þ
k � 0; ð5Þ

where k is a k-dimensional vector, and y is an m-dimensional vector.
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Theorem 2 (Weak duality). Suppose that for all feasible x in (P) and all feasible

(u,y,k, p) in (MD)

(i) ytg(Æ) is second order (F,a,q, d)-quasiconvex at u, and assume that any one

of the following conditions holds:

(ii) k > 0, and f(Æ) is strong second order (F,a1,q1,d)-pseudoconvex at u with
a�1qþ a�1

1 q1k=0,

(iii) ktf(Æ) is strictly second order (F,a2,q2,d)-pseudoconvex at u with

a�1qþ a�1
2 q2=0.

Then the following cannot hold:

f ðxÞ � f ðuÞ � 1

2
ptr2f ðuÞp. ð6Þ
Proof. Let x be any feasible solution in (P) and (u,y,k,p) be any feasible solu-
tion in (MD). Then we have

ytgðxÞ505ytgðuÞ � 1

2
ptr2ytgðuÞp. ð7Þ

Using second order (F,a,q,d)-quasiconvexity of ytg(Æ) at u, we get

F x; u; aðx; uÞ rytgðuÞ þ r2ytgðuÞp
� �� �

5� qd2ðx; uÞ. ð8Þ

Since a(x,u) > 0, the inequality (8) with the sublinearity of F yields

F ðx; u;rytgðuÞ þ r2ytgðuÞpÞ5� a�1ðx; uÞqd2ðx; uÞ. ð9Þ

The first dual constraint and the sublinearity of F give

F x; u;rktf ðuÞ þ r2ktf ðuÞp
� �

=� F x; u;rytgðuÞ þ r2ytgðuÞp
� �

. ð10Þ

The inequalities (9) and (10) imply

F x; u;rktf ðuÞ þ r2ktf ðuÞp
� �

=a�1ðx; uÞqd2ðx; uÞ. ð11Þ

Now suppose contrary to the result that (6) holds, i.e.,

f ðxÞ � f ðuÞ � 1

2
ptr2f ðuÞp; ð12Þ

which by virtue of (ii), leads to

F x; u; a1ðx; uÞ rf ðuÞ þ r2f ðuÞp
� �� �

� �q1d2ðx; uÞ. ð13Þ

On multiplying (13) by k > 0 and using the sublinearity of F with a1(x,u) > 0,
we obtain

F x; u;rktf ðuÞ þ r2ktf ðuÞp
� �

< �a�1
1 ðx; uÞq1kd2ðx; uÞ5a�1ðx; uÞqd2ðx; uÞ;

which contradicts (11). Hence (6) cannot hold.
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On the other hand, multiplying the inequality (12) by k, we have

ktf ðxÞ5ktf ðuÞ � 1

2
ptr2ktf ðuÞp. ð14Þ

When hypothesis (iii) holds, the inequality (14) implies

F x; u; a2ðx; uÞ rktf ðuÞ þ r2ktf ðuÞp
� �� �

< �q2d2ðx; uÞ. ð15Þ

Since F is sublinear and a2(x,u) > 0, it follows from (15) that

F x; u;rktf ðuÞ þ r2ktf ðuÞp
� �

< �a�1
2 ðx; uÞq2d2ðx; uÞ5a�1ðx; uÞqd2ðx; uÞ;

a contradiction to (11). Hence (6) cannot hold. h
Theorem 3 (Strong duality). Let �x be an efficient solution of (P) at which the

Kuhn–Tucker constraint qualification is satisfied. Then there exist �y 2 Rm and
�k 2 Rk, such that ð�x; �y; �k; �p ¼ 0Þ is feasible for (MD) and the corresponding values
of (P) and (MD) are equal.

If, in addition, the assumptions of weak duality (Theorem 2) hold for all fea-
sible solutions of (P) and (MD), then ð�x; �y; �k; �p ¼ 0Þ is an efficient solution of
(MD).

Proof. Since �x is an efficient solution of (P) at which the Kuhn–Tucker
constraint qualification is satisfied, then by Theorem 1, there exist �y 2 Rm and
�k 2 Rk, such that

�k
trf ð�xÞ þ �ytrgð�xÞ ¼ 0;

�ytgð�xÞ ¼ 0;

�y=0;
�k � 0.

Therefore ð�x; �y; �k; �p ¼ 0Þ is feasible for (MD) and the corresponding values of
(P) and (MD) are equal. The efficiency of this feasible solution for (MD) thus
follows from weak duality (Theorem 2). h
Theorem 4 (Strict converse duality). Let �x and ð�u; �y; �k; �pÞ be the efficient solu-

tions of (P) and (MD), respectively, such that

�k
t
f ð�xÞ ¼ �k

t
f ð�uÞ � 1

2
�ptr2�k

t
f ð�uÞ�p. ð16Þ

Suppose that any one of the following conditions is satisfied:

(i) �ytgð�Þ is second order (F,a,q, d)-quasiconvex at �u and �k
t
f ð�Þ is strictly sec-

ond order (F,a1,q1,d)-pseudoconvex at �u with a�1qþ a�1
1 q1=0,
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(ii) �ytgð�Þ is strictly second order (F,a,q, d)-pseudoconvex at �u and �k
t
f ð�Þ is sec-

ond order (F,a1,q1,d)-quasiconvex at �u with a�1qþ a�1
1 q1=0.

Then �x ¼ �u; that is, �u is an efficient solution of (P).
Proof. We assume that �x 6¼ �u and reach a contradiction. Since �x and ð�u; �y; �k; �pÞ
are, respectively, the feasible solutions of (P) and (MD), we have

�ytgð�xÞ505�ytgð�uÞ � 1

2
�ptr2�ytgð�uÞ�p. ð17Þ

Using second order (F,a,q,d)-quasiconvexity of �ytgð�Þ at �u, we get

F �x; �u; að�x; �uÞ r�ytgð�uÞ þ r2�ytgð�uÞ�p
� �� �

5� qd2ð�x; �uÞ. ð18Þ

Since að�x; �uÞ > 0, the inequality (18) along with the sublinearity of F yields

F �x; �u;r�ytgð�uÞ þ r2�ytgð�uÞ�p
� �

5� a�1ð�x; �uÞqd2ð�x; �uÞ. ð19Þ

The first dual constraint and the sublinearity of F imply

F �x; �u;r�k
t
f ð�uÞ þ r2�k

t
f ð�uÞ�p

� �
þ F �x; �u;r�ytgð�uÞ þ r2�ytgð�uÞ�p

� �

=F �x; �u;r�k
t
f ð�uÞ þ r2�k

t
f ð�uÞ�p þr�ytgð�uÞ þ r2�ytgð�uÞ�p

� �
¼ 0. ð20Þ

The inequalities (19), (20) and a�1qþ a�1
1 q1=0 imply

F �x; �u;r�k
t
f ð�uÞ þ r2�k

t
f ð�uÞ�p

� �
=� a�1

1 ð�x; �uÞq1d2ð�x; �uÞ. ð21Þ

Using strict second order (F,a1,q1,d)-pseudoconvexity of �k
t
f ð�Þ with

að�x; �uÞ > 0

�k
t
f ð�xÞ > �k

t
f ð�uÞ � 1

2
�ptr2�k

t
f ð�uÞ�p;

contradicting (16).
When the hypothesis (ii) holds, it follows from (17) that

F �x; �u; að�x; �uÞ r�ytgð�uÞ þ r2�ytgð�uÞ�p
� �� �

< �qd2ð�x; �uÞ.

Since að�x; �uÞ > 0, the above inequality with the sublinearity of F gives

F �x; �u;r�ytgð�uÞ þ r2�ytgð�uÞ�p
� �

< �a�1ð�x; �uÞqd2ð�x; �uÞ;

which on using first dual constraint with the sublinearity of F implies

F �x; �u;r�k
t
f ð�uÞ þ r2�k

t
f ð�uÞ�p

� �
> a�1ð�x; �uÞqd2ð�x; �uÞ.

As a�1qþ a�1
1 q1=0, we obtain

F �x; �u;r�k
t
f ð�uÞ þ r2�k

t
f ð�uÞ�p

� �
> �a�1

1 ð�x; �uÞq1d2ð�x; �uÞ. ð22Þ
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The second order (F,a1,q1,d)-quasiconvexity of �k
t
f ð�Þ and (22) with

a1ð�x; �uÞ > 0 yield

�k
t
f ð�xÞ > �k

t
f ð�uÞ � 1

2
�ptr2�k

t
f ð�uÞ�p;

again contradicting (16). h
Remark 2. It may be noted that the strong and strict converse duality theo-
rems are valid for weak efficient solutions as well. In the proof of strict con-
verse duality theorem, the efficiency of �x for (P) has not been used while the
strong duality theorem holds for weak efficient solutions on using Theorem
B in [12] instead of Theorem 1.
4. Conclusion

In this paper, second order (F,a,q,d)-convexity and its generalizations are
introduced, which include many other generalized convexity concepts in math-
ematical programming as special cases. Our concepts are suitable to discuss the
weak, strong and strict converse duality theorems for Mond–Weir type second
order dual of multiobjective programming problem. These results can be fur-
ther generalized to a class of nondifferentiable multiobjective programming
problems.
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