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Abstract

In this paper, a pair of multiobjective fractional variational symmetric dual problems over cones is formulated. Weak,
strong and converse duality theorems are established under generalized % -convexity assumptions. Moreover, self duality
theorem is also discussed.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The notion of symmetric duality in nonlinear programming, in which the dual of the dual is the primal, was
first introduced by Dorn [13], but significantly developed and studied by Dantzig et al. [11], Mond and Weir
[23], and Chandra et al. [7]. Bazaraa and Goode [4] generalized the results of Dantzig et al. [11] to arbitrary
cones. Nanda and Das [24] studied symmetric duality in fractional programming involving arbitrary cones
assuming the functions to be pseudoinvex. Chandra and Kumar [10] pointed out some logical shortcomings
in the proofs of duality theorems of Nanda and Das [24]. Suneja et al. [26] formulated a pair of multiobjective
symmetric dual programs over arbitrary cones and proved various duality results for cone—convex functions.
Recently, Khurana [19] discussed multiobjective symmetric duality results for Mond—Weir type problems
under generalized cone—invex functions.

Mond and Hanson [22] and Bector et al. [5] extended symmetric duality to variational programming, giving
continuous analogous of the results of Dantzig et al. [11] and Mond and Weir [23], respectively. Smart and
Mond [25] studied symmetric duality for variational problems with invexity, omitting the nonnegativity con-
straints taken by Mond and Hanson [22]. Gulati et al. [16] presented a pair of multiobjective symmetric dual
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variational problems and discussed duality results under generalized invexity. In [15], Gulati et al. generalized
the results of Mond and Hanson [22] and Bector et al. [5] by constraining some of the primal and dual vari-
ables to belong to arbitrary sets of integers. Recently, Ahmad and Husain [3] formulated minimax mixed inte-
ger multiobjective symmetric dual variational programs over cones and obtained appropriate duality results.

Chandra and Husain [9] studied symmetric duality for fractional variational problems. In [17], Gulati et al.
established usual duality results for static and continuous symmetric dual fractional programming problems
without nonnegativity constraints. Recently, Kim et al. [20] and Ahmad [1] discussed symmetric duality results
for multiobjective fractional variational programs under invexity and pseudoinvexity, respectively.

Generalizing convex functions, Hanson and Mond [18] introduced functions which satisfy certain convexity
type properties with sublinear functionals. Egudo and Mond [14] named these functions as % -convex, .7 -
pseudoconvex, and # -quasiconvex functions. Examples of these functions have been given in [14,18] also.
Later on, Chandra et al. [8] used these definitions in another form to discuss symmetric duality. Motivated
by Hanson and Mond [18], Egudo and Mond [14], and Chandra et al. [§], we propose the continuous version
of generalized % -convexity, and use this concept to prove symmetric duality results for multiobjective frac-
tional variational symmetric problems involving arbitrary cones. At the end, self duality theorem is also
proved.

2. Notations and preliminaries

Let I = [a, b] be a real interval, and C; C R",C, C R", be closed convex cones with nonempty interiors hav-
ing polars C} and C;. Let for each i € K = {1,2,...,k}, f(t,x(¢),x(¢),»(¢), »(¢)) and g'(¢,x(¢),x(¢), y(¢), ¥(2)),
where x: / — R" and y: I — R", with derivatives x and y, are twice continuously differentiable functions.
Superscripts denote vector components; subscripts denote partial derivatives. The symbols f!, 1!, f; and fyl
denote gradient vectors of the scalar function f7(¢,x(¢),x(¢),y(¢), »(z)) with respect to x,x,y and y for i € K.
For instance,

p_ (Y ! g (¥ !
xo\oxl T o) o\ o)

Similarly, g, g},g, and g can be defined.
Let S(I,R") denotes the space of piecewise smooth functions x with norm ||x|| = ||x||, + [|Dx||,,, where the
differentiation operator D is given by

t
u=Dx <= x(t) =a+ / u(s)ds,
0

where o is a given boundary value. Therefore, & = D except at discontinuities. Denote by Y (Z, R"), the space of

piecewise smooth functions y : / — R™ with the norm as that of space S(/,R").
Consider the following multiobjective variational problem:

(P) Minimize (/ﬂb o' (t,x(¢),x(r))dt, . .. ,/ab ¢>k(t,x(t),5c(t))dt>

subject to  x(a) =

h(t,x(t),x(¢)) =0, tel,

where ¢ : I x R" x R" — R* and h : I x R" x R" — R™ are differentiable functions.
Let X denotes the set of all feasible solutions of (P), i.e.,

X = {x € SU,R")x(a) = 0 = x(b),5(a) = 0 = (b), h(t,x(1),x(t)) < 0, tel}.
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Defintion 1. A point x” € X is said to be an efficient solution of (P), if there exists no other x € X such that
b b
/ @' (t,x°(),2°(¢))dt > / ¢'(t,x(t),%(¢))dt, for some i€ K,
ab | a s |
/ ¢ (¢,x°(2),%°(¢))dt = / ¢ (t,x(1),x(¢))dt, forall jeK.

Defintion 2 [6]. A point x° € X is said to be a weakly efficient solution of (P), if there exists no other x € X
such that

/ b¢i(t,x°(t),x°(t))dt> / b¢"(z,x(t),x(t))dt, for all i€ K.

Defintion 3. A functional # : I x R" x R" x R" x R" x R" — R is said to be sublinear in its sixth argument, if
for any x,x,u,u € S(I,R"),

(1) F(t,x,x,u, ;00 + o) < F(t,x,x,u,i;00) + F (t,x,%,u,1;0), for any oy, 0, € R"; and
(i) F (t,x,%,u,u; por) = pF (¢t,x,%,u,i;0), for any f € R, =2 0 and « € R".

Let y : I Xx R" x R" x R™ x R™ — R be a differentiable function.

Defintion 4. The functional ff W(t,x(t),x(¢),y(t),p(¢))dr is said to be F-pseudoconvex in x and x for fixed y
and y, if

b b b
/f(t,x,fc,u,it;t//x(t,u,zk,y,j/)—Dtpx(t,u,iz,y,jz))dt20:/ Wt x5, v, §)de > / bt u,it,y, p)dt,

for all x,u : I — R" and for some arbitrary sublinear functional % .
The functional j;b W (t,x(t),x(¢),y(t), ¥(¢))dz is said to be strictly # -pseudoconvex in x and x for fixed y and
j, if

b b b
/ e97([7'X:7)'C’1/l71;l; lﬁx(t7u’u7y’y) _Dl//x(tvu7il’y7j}))dt 2 0:>/ w(t7x7'x.:’y’y)dt> / lp(t’u7u7y7y)dt’

for all x,u : I — R" and for some arbitrary sublinear functional % .

Defintion 5. The functional f: W(t,x(t),x(¢),y(t), »(¢))dt is said to be F -pseudoconcave in y and y for fixed x
and x, if

b b b
/ F (1,0, 0,35~ (1,3,5,0,0) — DYy (1,3, %,0,5)})de 2 0 = / W(t,x,%,0,0)dt < / Wt x, &y, 9)d,

for all y,v: I — R™ and for some arbitrary sublinear functional % .
Similarly, strict # -pseudoconcavity of the functional fab W(t,x(t),x(¢),y(t), »(t))dt can be defined.
Example. The function ¢/ : / X R X R X R Xx R — R defined by

W(t,x(t), (), 9(2), 39(1)) = (x(2) +* (1))t
is # -pseudoconvex in x and x for fixed y and y on I = [a,b],a < b, with respect to the sublinear functional

F(4,x(2),%(2), 9(2), 9(0); 2) = (x(¢) — y(0))z.

The function  is # -pseudoconcave also in y and y for fixed x and x on I = [a, b],a < b, with respect to the
sublinear functional
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1

F0.x050.50.500:2) = 5 (30 - 51 ).

Defintion 6. Let x € C C R". Then C'is a cone if and only if Ax € C, for all 2 = 0. Moreover, C is called a con-
vex cone if it is convex.

Defintion 7. Let C C R” be a cone. Then C” is said to be a polar of C, if
C'={peR'p'x<0, forallxeC}.
In the sequel, we will write 7 (¢,x,u; ) for F (t,x,%,u,u; &) and F (¢,v,y;n) for F (¢,v,0,y,1;1).

3. Symmetric duality

We present the following pair of multiobjective fractional variational symmetric dual programs:

(SP) Minimize ﬁfl(t,x,x,y7y>df j;;bfz(t7x7x7y7y)dl f:fk(t7x7x7y7y)dt
jjgl(t,x,)'c,y,j/)dt’jfgz(t,x,fc,y,j/)dt’ 7ffgk(tax>xvyvy)dt
subject to  x(a) = 0 =x(b),y(a) =0 = y(b),
¥(a) =0 =x(b), (a) = 0 = 3(b),

;;;{Gi(x,y) (ff —fov) — Fi(x,y) (gjv —Dg;)} €eC;, tel,

k
0"y G y)(fi - Df}) - Fi(x,y)(g, — Dgi)} =20, tel,
i=1
A>0,x(t) e Cy, tel
b 11 . . b . . b P . .
(SD) Maximize fabf (¢, u, i, v, U)dt,f“bf (¢t,u, i, v, v)dt’ B _,fabf (¢, u, i, v,0)dt
[ g (tuy i v, 0)de [ g2t u, i v,0)de [ g (t,uy i, v, 0)de
subject to  u(a) =0 =u(b),v(a) =0 = v(b),
i(a) =0=1u(b),v(a) =0=10(b),

k
— > G w,v)(f] — DfL) — Fl(u,v)(g. — Dgl)} € C;, 1€,
i=1

k

u(t)' Y "G (u,v)(f] = Dfi) — F'(u,v)(g, — Dgi)} £0, t€l,
i=1

A>0,0(t) € Cy, tel,

where, /" : I X C; xC; x C; xCy — Ry, and g : I x C; x C; x C, x C; — R, \ {0}, i€K, are twice con-
tinuously differentiable functions, and

b b
wa=/memww,Gmw=/gmmme

Remark. If C; =R’,,C, = R", and k =1, then the programs (SP) and (SD) reduce to those considered by
Gulati et al. [17] with the omission of x =2 0 and v = 0 in (SP) and (SD), respectively.

On using an abstract version of Dinkelbach’s results [12], we define for each i € K,
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J_Fy) J gy p)de
G'(xy) [} g(t,x%y,3)dt’
. Fl(u,v) fffi(t,u, i, v, v)dt
= - = s
G'(u,v) ﬁgi(t,u,u, v, 0)dt
and express the problems (SP) and (SD) in the following equivalent forms:
(SP)" Minimize s = (s',s%,...,s")
subject to  x(a) =0=1x(b), y(a)=0=y(b), (1)
X(a) =0=x(b), y(a)=0=j(b), (2)
b b
Pl [ glexiyid=o. ek ()
P '
> M(fi-Df}) —s'(g,—Dg)} € Gy, 1€, (4)
i=1
vy A{(fi—Df}) —s'(¢, — Dg})} 2 0, 1€l (5)
i=1
A>0,x(t) e Cy, tel (6)
(SD)" Maximize r= (r',7%,...,r")
subject to u( ) =0=u(b), wv(a)=0=uv(b), (7)
—0—a(b), ia)=0=ib), (8)
/f’tuuvv t—r/g(t,u,it,v,i))dt:O, i €K, 9)
_Z/L{(»f;f ijr)_r(gx Dg;c)}ecﬁlkv te]v (10)
i=1
)" Y (i -Dfy) — (el —Dg)}y S0, 1€, (11)
i=1
A>0,0(t)eCy, tel. (12)

Let P and Q denote the sets of feasible solutions of (SP) and (SD)’, respectively.
In the subsequent analysis, weak, strong and converse duality theorems are discussed in terms of (SP)’ and
(SD)', but equally apply to (SP) and (SD). In the following theorem, it is assumed that:

F(tx,u; &) +u'é 20, forallx,ue Cy,—¢€Ct, and tel (13)
and
F(t,v,y;n) +y'n =0, forallv,ye Cy,—neC;, and tel. (14)

Theorem 1 (Weak duality). Let (x,y,4,s) € P and (u,v,A,r) € Q. If either

f Z, AL v, 9) — gty -, v, 9) Yt is F-pseudoconvex in x and x and f: Zleﬂf{f"(t,x,x,-,-)—
s'g'(t,x,x,-,-) }dt is strictly F -pseudoconcave in y and y; or

(ii) ffZLi’{f’(r, sV, V) —Fgi(t, -y, )Yt is strictly F -pseudoconvex in x and x and f: Zf;lﬂf{f"
(t,x,%,-,-) — s'g'(t,x,x,-,-) }dt is F-pseudoconcave in y and y,

holds, then
s&r.
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Proof. (i). By taking ¢= Zleii{(/‘; —Df;).— r(gi —Dg)} and wusing (13), we get Z(t,xu;
S A= Df) —ri(gh — Dg)Y) 2 —u"S L A{(fl = Dfi) — r'(gl — Dgl)} 2 0, by (11), which implies

b k
/ F(txw Y #{(f1 - D) — F(g. — Dg)})de = 0.
a i1

This, in view of .Z -pseudoconvexity of f: SN v, 9) — PEit, -, -y, 7) e in x and X gives
/ Z/I’{f’(t,x,)'c, v,0) —r'g'(t,x,x,v,0)}dt 2 / Zﬂf{f’(l,u,u, v,0) —r'g'(t,u, i, v,0)}dr.
O a o

This, in view of (9) yields
/ S x50, 8) — Pg (63,5, 0, ) e = 0, (15)
a ‘2
Taking n = —Zleii{(fvi — Df) — s'(g, — Dg},)} and using (14), we obtain
i=1 i=1
which shows that
| # =Y 2 - Dr) - s'tg, ~ Del) e 2 0.
a i=1

The strict Z-pseudoconcavity of f: Zleﬂf{f"(t,x,x,-,-)—sigi(t,x,)‘c,-,-)}dt in y and y along with (3)
yields

b k
/ > At x kv, b) — s/ (t,x, %, v, D) b < 0. (16)
a =1

Combining (15) and (16), we get

b k
/ > A (s =g (t,x, %, v, 6)dt > 0, (17)
a =1

Suppose, if possible, that s <, ie., s' </, for some i € K and s’ =/, for all j # i, then from 4> 0 and
fabgi(f,x,fc, v,0)dt > 0, we have

bk
/ Z (s — g (t,x,x,v,0)dt < 0,
O

which contradicts (17). Hence
s&r.
(i1). The proof is same as that of part (i). [

Theorem 2 (Strong duality). Let

(al): (X,3,4,5) be a weakly efficient solution of (SP)',

@2): [0 (S 7(1 - ¥'8,) = DL (S - 5g,) b+ D{e) DXL, - Se)} + Do)
Zf:l;li(f;y. — 5'gj;) H@(t) = 0 implies &(t) = 0, where @(t) = (y(¢) — &(O)y(2), t € I; and

(a3): the set {((f} —5'e}) —D(f) —5'g})), .-, ((ff —5'¢}) — D(f} —5"g}))} be linearly independent.
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Then (X,%,2,5) € Q with ). = J; and the objective values of (SP)' and (SD)' are equal. If, in addition, the
assumptions of weak duality (Theorem 1) are satisfied, then (X,7,5) is an efficient solution of (SD)" with A = J.

Proof. Since (%,7,1,5) is a weakly efficient solution of (SP)’, by Fritz John optimality conditions [26], there
exist o € R*, B € R*, piecewise smooth y: I — C,, ¢ : I — R and & € R* such that

=~

> B —5g) — D(ff =5} + (¢ Z: —5'g,) — D(f}, —5'¢5,)} — D(y(¢)

i=1

k
Z j’ -f)jx s gyx D(ofyx -5 gy‘c (][)jx - §lg;r)}
i=1

+ DH{=((0) = EO(0))" Y X (S —5'gh )} (x(0) = x(1)) 2 0, Vx(r) € Cy, 1€, (18)

M*

i=1

and the equalities (19)—(24) and (26)—(28) (with ¢’ =5') in [1] hold. Following the proof of Theorem 2 [1], we
obtain

() = &)y() =0, €l (19)
and
B=¢E()A, tel (20)
For &(¢) =0, we reach a contradiction, and therefore £(¢) > 0. So, we have
_ y(t)
H="ALecCy, tel. 21
() =5 € C e

Now, (18) along with (19) and (20), and with &(¢) > 0, gives

ST - Fg) — D(ff —5gh) F(x(r) — %(1))

i=1

1\

0, tel. (22)
Let x(¢) € C,. Then x(¢) +x(¢t) € C,, t € I and so (22) shows that for every x(¢) € Cy,
k

> (-5 - —5g)x() 20, tel,

i=1
le.,
k

=Y W{(fi -5g) - D(fi —sg)}eC;, tel (23)

i=1

Also, by letting x(¢) = 0 and x(¢) = 2%(¢) simultaneously in (22), we obtain

Zw (fl —5¢)) = D(fi —5'gl)} =0, tel (24)

Thus, from (21), (23) and (24), it follows that (%, 3, 2,5) € Q with 1 = 1, and the two objective functionals are
equal (i.e., s = 7). -
If (x,7,5) is not an efficient solution of (SD)’ with 4 = /, then there exists (u*,v*,r") feasible of (SD)" with
A =12,1e., (u*,v*, A, r") € O such that
s<
which contradicts weak duality (Theorem 1). Thus (%, 7,5) is an efficient solution of (SD)’ with A =4. O

The proof of the following theorem is analogous to Theorem 2, and hence being omitted.
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Theorem 3 (Converse duality). Let

(al): (@,0,2,7) be a weakly efficient solution of (SD)’,
(@2): [P {2 (7~ 7g) = DX 2 (f — #gl) b+ D{ WO DXL A — Pl } + D { = v ()T 2
(ff. —7gt )W (t) = 0 implies W (t) =0, where ‘P( ) (y(t) = &()u(z)), t € I and
(a3): the set {((f! —F'g!) = D(f! —#'gl)), ..., ((f* — #g") — D(f¥ —#gh))} be linearly independent.
Then (u,v,A,7) € P with ). = J; and the objective values of (SP)'and (SD) are equal. If. in addition, the
assumptions of weak duality (Theorem 1) are satisfied, then (i, v,7) is an efficient solution of (SP) with ) = J.
4. Self duality

A mathematical programming problem is said to be self dual, if its dual can be written in the form of the
primal.

The function f*(¢,u,it,v,0) : I x C x C x C x C — R, ,i € K, is said to be skew symmetric, if
[t u, i, v,0) = —f'(t,v,0,u,i),i €K, tel,

for all u and v in the domain of £, and the function g’(¢,u,it,v,0) : I x C x C x C x C — R\ {0},i €K, is
said to be symmetric, if

g (tu,i,v,0) = g(tv,v,u,u), i€k, tel,

for all u and v in the domain of g'.
Consequently, it follows that

f;(l,u,it,v,i)):—f;(t,v,b,u,h);f;(t,u,u,v,b):—ﬂ(t,v,b,u,u), ick, tel,
and

g (tyu, i, v,0) = g;(z, v, 0, u,11); g4 (¢, uy i, v,0) = g;(t, v, o,u,u), i€k, tel.

Now we assume C; = C, = C; C] = C5 = C7; fand g',i € K, to be skew symmetric and symmetric, respec-
tively, to show that (SP) and (SD) are self duals.
The problem (SD) may be recast as a minimization problem as:

S g, 0)de 7 £ (w0, 0)de [T f4 (w0, 6)de
ffgl(t,u,u, v, i))dt’f:gz(t,u,u, v, b)dtr"’f;gk(t,u,it,v, 0)dt
subject to  u(a) =0 =u(b),v(a) =0 = v(b),
i(a) =0 =1u(b),i(a) = 0=0(b),

Minimize

k
- Zij{Gi(uvv)(ﬁ —Df}) = F'(u,v)(g, — Dgy)} € C", L€

k

u(®)" 3 2{G (u,v)(f! — Df}) — F'(u,0)(g, — Dgl)} S0, tel,
i=1

A>0, v(t)eC, tel.

On using the skew symmetry and symmetry of £ and g’, respectively, for each i € K, the above problem is
transformed to



I Ahmad, S. Sharma | European Journal of Operational Research 188 (2008) 695-704 703

ff (t,0,0,u,i)dt [7 f2(t,0,0,u,i)de 12 f5(t, v, 0, u, it)dt
g L0, 0,u, i) ¢’ g2 (t,v,0,u,u ¢ gk(t, v, 0, u, 11)dt
)de' 7 g2 d ? gk d
subject to  u(a) =0 =u(b),v(a) =0 =v(b),
i(a) =0 =1u(b),v(a) =0 = i(b),
k
)

(SD)" Minimize

WG (v,u)(f] — Df}) — F'(v,u)(g, — Dg})} € C*, 1€l

1

u()" > WG (v,u)(f] — Df}) — F'(v,u)(g}, — Dg})} 20, tel,

A>0, o(t)eC, tel,

which is formally identical to (SP), i.e., the objectives, the constraint functions and the initial conditions of
(SP) and (SD)" are identical. Thus, (SP) is a self dual. It can easily be shown that the feasibility of (x,y, 1)
for (SP) implies the feasibility of (y,x, A) for (SD) and conversely.

Theorem 4 (Self duality). Let fi(t,x,%,y,7) be skew symmetric and g'(t,x,x,y,y) be symmetric for each i € K;
let Cy =Cy=C and C; =C; =C". Then (SP) is a self dual. Also, if (SP) and (SD) are dual variational
problems, and (x°,)°, /10) is a joint weakly efficient solution, then so is (3°,x°, ") and

b . )
faf(t,xo,xo,yo,yo)dt:

. : , icK.
[ gi(t,x0,x0,)0,30)ds

Proof. Since (x°,)°, /10) is a joint weakly efficient solution of (SP) and (SD), the objective functional values are
equal to

b l . .
j;lf(tﬂx07x07y07y0)dt

b . . . ?
[, g (t,x°,%0, )0, 30)d¢

As (SP) is a self dual, it follows that (x°,)°, 1°) is feasible for (SP) iff (°,x°, 1°) is feasible for (SD). Therefore,
weak efficiency of (x°,)°, 1) for (SP) implies the weak efficiency of (3°,x°, A°) for (SD) and conversely. Also,
the two objective values are equal to

Jo £7(2,3°,3°,x°, 20
J7 gi(t,30,30,20,10)de
Thus, we have
Jo £, 2000, 30 76,0050, 40,50 de
j:gi(t)x07x07y07yo)dt ﬁgi(t7y0)y07x07x0)dt7
b : .
_ _j;z f (t7x07x07y07y0)dt ickK
- b i(s 40 %0 10 0Vds ’
J, g/, x0, 30,30, j0)dt
(by the skew symmetry of f* and by the symmetry of g'). Hence
b . .
j;z f (tax0>x07y0ay0)dt _
f:gi(t7x07x07y07y0)dt

ick.

ick.

ickK

ick. O

5. Conclusion

We have presented multiobjective fractional variational symmetric dual programs over cones, and obtained
symmetric duality results by assuming the functions involved to be .Z -pseudoconvex/Z -pseudoconcave and
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strictly Z -pseudoconvex/strictly.Z -pseudoconcave. Our results extend the results appeared in [1,20], and some
other references cited therein. It is possible to extend these results to a more general class of functions, viz.,
(7,0, p,d)-convex functions [21], and generalized (o, p, d)-convex functions [2].
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