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1. Introduction

The notion of symmetric duality in which the dual of the dual is the primal, found its way in nonlinear programming in
the excellent work of Dorn [1]. However, it was significantly developed and studied by Dantzig et al. [2], Mond [3] andMond
and Weir [4]. Subsequently, symmetric duality was generalized to multiobjective case by Weir and Mond [5] and as well
as by Gulati et al. [6]. Bazaraa and Goode [7] generalized the results in [2] to arbitrary cones. Mond and Weir [8] presented
two pairs of symmetric dual multiobjective programming problems with non-negative orthant as the cone and established
appropriate duality results for efficient solutions. Nanda andDas [9] discussed symmetric duality for fractional programming
problems over arbitrary cones assuming the functions to be pseudoinvex. Das and Nanda [10] studied symmetric duality
in multiobjective programming with cone constraints. Subsequently, Kim et al. [11] derived symmetric duality results for
multiobjective programs under pseudoinvex/strictly pseudoinvex functions and arbitrary cones.
Chandra and Abha [12] and Chandra and Kumar [13] pointed out some logical shortcomings in the dual formulations and

the proofs of the duality theorems of Das and Nanda [10], Kim et al. [11] and Nanda and Das [9], respectively, and observed
that these results are highly restricted as they are not valid even for convex case. Suneja et al. [14] formulated a pair ofWolfe
typemultiobjective symmetric dual programs over arbitrary cones, inwhich the objective function is optimizedwith respect
to an arbitrary closed convex cone by assuming the functions involved to be cone-convex. Later on, Khurana [15] formulated
a pair of Mond–Weir type multiobjective symmetric dual programs over arbitrary cones and derived symmetric duality
theorems involving cone-pseudoinvex and strongly cone-pseudoinvex functions. Recently, Kim and Kim [16] extended
the results of Suneja et al. [14] and Khurana [15] to nondifferentiable multiobjective symmetric dual programs for weak
efficiency involving cone-invex and cone-pseudoinvex functions.
Motivated by Bector et al. [17], Ahmad [18], Suneja et al. [14] and Khurana [15], we formulate a pair of multiobjective

mixed symmetric dual programs over arbitrary cones and establish weak, strong and converse duality theorems under
cone-invexity and cone-pseudoinvexity. At the end, it is also shown that under additional property of skew symmetry, (VP)
and (VD) are self-duals; and a self-duality theorem is stated. Our mixed symmetric dual formulation unifies two existing
symmetric dual formulations discussed in [14,15].
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2. Notations and preliminaries

Let Rn denote the n-dimensional Euclidean space. The following conventions for vectors x, y ∈ Rn will be followed
throughout this paper: x 5 y ⇔ xi 5 yi, i = 1, 2, . . . , n; x ≤ y ⇔ x 5 y and x 6= y; x < y ⇔ xi < yi, i = 1, 2, . . . , n. For
N = {1, 2, . . . , n} andM = {1, 2, . . . ,m}, let J1 ⊆ N, K1 ⊆ M and J2 = N \ J1 and K2 = M \ K1. Let |J1| denote the number
of elements in J1. The other symbols |J2|, |K1| and |K2| are defined similarly. Let x1 ∈ R|J1|, x2 ∈ R|J2|. Then any x ∈ Rn can be
written as (x1, x2). Similarly for y1 ∈ R|K1| and y2 ∈ R|K2|, y ∈ Rm can bewritten as (y1, y2). It may be noted that if J1 = ∅, then
|J1| = 0, J2 = N and therefore |J2| = n. In this case, R|J1|, R|J2| and R|J1| × R|K1| will be zero-dimensional, n-dimensional and
|K1|-dimensional Euclidean spaces, respectively. The other situations are J2 = ∅, K1 = ∅ or K2 = ∅. These give particular
cases of the problems considered in this paper and are discussed in Section 3.
Let f : R|J1|× R|K1| → Rl and g : R|J2|× R|K2| → Rl. Then5x1 f (x, y) and5x2 g(x, y) denote the l×|J1| and l×|J2|matrices

of first order partial derivatives. For the scalar function λf with λ ∈ Rl, 5x1(λf ) and 5y1(λf ) denote gradient vectors with
respect to x1 and y1, respectively; 5y1y1(λf ) and 5x1x1(λf ) denote respectively the |K1| × |K1| and |J1| × |J1| matrices of
second order partial derivatives. 5x2(λg), 5y2(λg), 5y2y2(λg) and 5x2y2(λg) are defined similarly. It should be clear from
the context that there is no notational distinction between row and column vectors.
Consider the following multiobjective programming problem:

(P) K -Minimize f (x)
Subject to − g(x) ∈ Q , x ∈ C,

where f : Rn → Rl, g : Rn → Rm and C ⊂ Rn, K and Q are closed convex cones with nonempty interiors in Rl and Rm,
respectively.

Definition 2.1. A feasible point u is said to be a weakly efficient solution of (P), if there exists no feasible x such that

f (u)− f (x) ∈ int K .

Definition 2.2. The positive polar cone K ∗ of K is defined by

K ∗ = {z ∈ Rl : xz = 0, for all x ∈ K}.

We rewrite the following definitions and remark from [16] in different forms:
Let S1 ⊆ Rn and S2 ⊆ Rm be open and S1 × S2 ⊆ Rn × Rm. Let ψ(x, y) : S1 × S2 → Rl be differentiable.

Definition 2.3. ψ(x, y) is said to be K -preinvex in x if for each v ∈ S2, there exists a function η1 : S1 × S1 → Rn such that

ψ(x, v)− ψ(u, v)− η1(x, u)5x ψ(u, v) ∈ K , for all x, u ∈ S1,

and ψ is said to be K -preinvex in y if for each x ∈ S1, there exists a function η2 : S2 × S2 → Rm such that

ψ(u, y)− ψ(u, v)− η2(y, v)5y ψ(u, v) ∈ K , for all y, v ∈ S2.

Remark 2.1. If ψ is K -preinvex in x with respect to η1, then ψ(x, v) − ψ(u, v) − η1(x, u)5x ψ(u, v) ∈ K . Moreover,
∀ λ ∈ K ∗,

(λψ)(x, v)− (λψ)(u, v)− η1(x, u)∇x(λψ)(u, v) = 0.

Definition 2.4. ψ(x, y) is said to be K -pseudoinvex in x if for each v ∈ S2, there exists a function η3 : S1 × S1 → Rn such
that

−η3(x, u)5x ψ(u, v) 6∈ int K ⇒ −(ψ(x, v)− ψ(u, v)) 6∈ int K , for all x, u ∈ S1,

and ψ is said to be K -pseudoinvex in y if for each x ∈ S1, there exists a function η4 : S2 × S2 → Rm such that

−η4(y, v)5y ψ(u, v) 6∈ int K ⇒ −(ψ(u, y)− ψ(u, v)) 6∈ int K , for all v, y ∈ S2.
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3. Mixed symmetric dual programs

We formulate the following pair of multiobjective mixed symmetric dual programs and prove duality theorems:

(VP) K -Minimize
[
f (x1, y1)+ g(x2, y2)−

[
y15y1 λf (x

1, y1)
]
e
]

Subject to

−5y1 λf (x
1, y1) ∈ C∗3 , (1)

−5y2 λg(x
2, y2) ∈ C∗4 , (2)

y25y2 λg(x
2, y2) = 0, (3)

λ ∈ K ∗, e ∈ int K , λe = 1, x1 ∈ C1, x2 ∈ C2. (4)
(VD) K -Maximize

[
f (u1, v1)+ g(u2, v2)−

[
u15x1 λf (u

1, v1)
]
e
]

Subject to

5x1 λf (u
1, v1) ∈ C∗1 , (5)

5x2 λg(u
2, v2) ∈ C∗2 , (6)

u25x2 λg(u
2, v2) 5 0, (7)

λ ∈ K ∗, e ∈ int K , λe = 1, v1 ∈ C3, v2 ∈ C4, (8)

where f : R|J1|× R|K1| → Rl and g : R|J2|× R|K2| → Rl are twice differentiable functions and e = (1, 1, . . . , 1). C1, C2, C3, and
C4 are closed convex cones with nonempty interiors in R|J1|, R|J2|, R|K1|, and R|K2|, respectively. K is a closed convex pointed
cone in Rl such that int K 6= ∅, and K ∗ is its positive polar cone.

Remark 3.1. If we set J2 = ∅, K2 = ∅, then (VP) and (VD) reduce to theWolfe type symmetric dual programs of Suneja et al.
[14]. Similarly, for J1 = ∅ and K1 = ∅, we get the Mond–Weir type symmetric dual programs discussed in [15].

Theorem 3.1 (Weak Duality). Let (x1, x2, y1, y2, λ) be feasible for (VP) and (u1, u2, v1, v2, λ) be feasible for (VD). Let

(i) f (., v1) be K-preinvex with respect to η1 for fixed v1, and −f (x1, .) be K-preinvex with respect to η2 for fixed x1 with
η1(x1, u1)+ u1 ∈ C1 and η2(v1, y1)+ y1 ∈ C3; and

(ii) g(., v2) be K-pseudoinvex with respect to η3 for fixed v2, and−g(x2, .) be K-pseudoinvex with respect to η4 for fixed x2 with
η3(x2, u2)+ u2 ∈ C2 and η4(v2, y2)+ y2 ∈ C4.

Then[
f (x1, y1)+ g(x2, y2)−

[
y15y1 λf (x

1, y1)
]
e
]
−
[
f (u1, v1)+ g(u2, v2)−

[
u15x1 λf (u

1, v1)
]
e
]
6∈ −int K .

Proof. By the K -preinvexity of f (., v1) and−f (x1, .) along with Remark 2.1, we have

λf (x1, v1)− λf (u1, v1) = η1(x1, u1)5x1 λf (u
1, v1),

and

λf (x1, y1)− λf (x1, v1) = −η2(v1, y1)5y1 λf (x
1, y1).

Adding the above inequalities, we obtain

λf (x1, y1)− λf (u1, v1) = η1(x1, u1)5x1 λf (u
1, v1)− η2(v

1, y1)5y1 λf (x
1, y1). (9)

Since η1(x1, u1)+ u1 ∈ C1 and5x1 λf (u
1, v1) ∈ C∗1 , we have

η1(x1, u1)5x1 λf (u
1, v1) = −u15x1 λf (u

1, v1). (10)

Similarly, η2(v1, y1)+ y1 ∈ C3 and−5y1 λf (x
1, y1) ∈ C∗3 imply

− η2(v
1, y1)5y1 λf (x

1, y1) = y15y1 λf (x
1, y1). (11)

In view of (10) and (11), it follows from (9) that[
λf (x1, y1)− y15y1 λf (x

1, y1)
]
−
[
λf (u1, v1)− u15x1 λf (u

1, v1)
]
= 0. (12)



322 I. Ahmad, Z. Husain / Computers and Mathematics with Applications 59 (2010) 319–326

From (6) and η3(x2, u2)+ u2 ∈ C2, we have

η3(x2, u2)5x2 λg(u
2, v2) = −u25x2 λg(u

2, v2)

= 0 (by (7)).

This gives

η3(x2, u2)5x2 g(u
2, v2) 6∈ −int K .

Since g(., v2) is K -pseudoinvex with respect to η3 for fixed v2, we have

g(x2, v2)− g(u2, v2) 6∈ −int K .

Then λ ∈ K ∗ and λ 6= 0 imply

λg(x2, v2)− λg(u2, v2) = 0. (13)

Similarly, from (2) and η4(v2, y2)+ y2 ∈ C4,

−η4(v
2, y2)5y2 λg(x

2, y2) = y25y2 λg(x
2, y2)

= 0 (by (3)).

This gives

−η4(v
2, y2)5y2 g(x

2, y2) 6∈ −int K .

As−g(x2, .) is K -pseudoinvex with respect to η4 for fixed x2, we get

g(x2, y2)− g(x2, v2) 6∈ −int K .

Therefore λ ∈ K ∗ and λ 6= 0 gives

λg(x2, y2)− λg(x2, v2) = 0. (14)

Combining (13) and (14) to get

λg(x2, y2)− λg(u2, v2) = 0. (15)

Relations (12) and (15) together yield

[λf (x1, y1)+ λg(x2, y2)− y15y1 λf (x
1, y1)] − [λf (u1, v1)+ λg(u2, v2)− u15x1 λf (u

1, v1)] = 0. (16)

Suppose contrary to the result that[
f (x1, y1)+ g(x2, y2)−

[
y15y1 λf (x

1, y1)
]
e
]
−
[
f (u1, v1)+ g(u2, v2)−

[
u15x1 λf (u

1, v1)
]
e
]
∈ −int K ,

which by λ ∈ K ∗, λ 6= 0, and λe = 1 yields

[λf (x1, y1)+ λg(x2, y2)− y15y1 λf (x
1, y1)] − [λf (u1, v1)+ λg(u2, v2)− u15x1 λf (u

1, v1)] < 0,

which contradicts (16). Hence the result. �

Theorem 3.2 (Strong Duality). Let (x̄1, x̄2, ȳ1, ȳ2, λ̄) be a weakly efficient solution of (VP), and λ = λ̄ fixed in (VD). Let

(a) the Hessian matrices5y1y1 λ̄f (x̄
1, ȳ1) and5y2y2 λ̄g(x̄

2, ȳ2) be positive definite; and
(b) the set

{
5y2 g

1(x̄2, ȳ2),5y2 g
2(x̄2, ȳ2), . . . ,5y2 g

l(x̄2, ȳ2)
}
be linearly independent.

Then (x̄1, x̄2, ȳ1, ȳ2, λ̄) is feasible for (VD) and the corresponding objective values of (VP) and (VD) are equal.
Also, if the assumptions of weak duality (Theorem 3.1) hold for all feasible solutions of (VP) and (VD), then (x̄1, x̄2, ȳ1, ȳ2, λ̄)

is a weakly efficient solution of (VD).

Proof. Since (x̄1, x̄2, ȳ1, ȳ2, λ̄) is a weakly efficient solution of (VP). Hence, by the generalized Fritz John type necessary
conditions [14], there exist Lagrange multipliers α ∈ K ∗, β ∈ C3, ν ∈ C4, ξ ∈ R+, µ ∈ K , and σ ∈ R+ such that

[5x1 αf (x̄
1, ȳ1)+ (β − αeȳ1)5x1y1 λ̄f (x̄

1, ȳ1)](x1 − x̄1) = 0, ∀ x1 ∈ C1, (17)

[5x2 αg(x̄
2, ȳ2)+ (ν − ξ ȳ2)5x2y2 λ̄g(x̄

2, ȳ2)](x2 − x̄2) = 0, ∀ x2 ∈ C2, (18)

(α − αeλ̄)5y1 f (x̄
1, ȳ1)+ (β − αeȳ1)5y1y1 λ̄f (x̄

1, ȳ1) = 0, (19)

(α − ξ λ̄)5y2 g(x̄
2, ȳ2)+ (ν − ξ ȳ2)5y2y2 λ̄g(x̄

2, ȳ2) = 0, (20)
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(β − αeȳ1)5y1 f
i(x̄1, ȳ1)+ (ν − ξ ȳ2)5y2 g

i(x̄2, ȳ2)− µi − σ = 0, i = 1, 2, . . . , l, (21)

β 5y1 λ̄f (x̄
1, ȳ1) = 0, (22)

ν5y2 λ̄g(x̄
2, ȳ2) = 0, (23)

ξ ȳ25y2 λ̄g(x̄
2, ȳ2) = 0, (24)

µλ̄ = 0, (25)
(α, β, ν, ξ, µ, σ ) 6= 0. (26)

Multiplying (21) by
[
αi − αeλ̄i

]
, i = 1, 2, . . . , l; summing the resulting expression for all i; using λ̄e = 1 and (25), we

obtain

(β − αeȳ1)
l∑
i=1

5y1 f
i(x̄1, ȳ1)

[
αi − αeλ̄i

]
+ (ν − ξ ȳ2)

l∑
i=1

5y2 g
i(x̄2, ȳ2)

[
αi − αeλ̄i

]
=

l∑
i=1

µi
[
αi − αeλ̄i

]
+ σ

l∑
i=1

[
αi − αeλ̄i

]
=

[
l∑
i=1

µiαi − αe
l∑
i=1

µiλ̄i

]
+ σ

[
l∑
i=1

αi − αe
l∑
i=1

λ̄i

]

=

[
l∑
i=1

µiαi − 0

]
+ σ [αe− αe]

(
∵

l∑
i=1

µiλ̄i = µλ̄ = 0 and
l∑
i=1

λ̄i = 1

)

=

l∑
i=1

µiαi

= µα.

That is,

(β − αeȳ1)5y1 f (x̄
1, ȳ1)

[
α − αeλ̄

]
+ (ν − ξ ȳ2)5y2 g(x̄

2, ȳ2)
[
α − αeλ̄

]
= µα,

which along with (23) and (24) gives

(β − αeȳ1)5y1 f (x̄
1, ȳ1)

[
α − αeλ̄

]
+ (ν − ξ ȳ2)5y2 g(x̄

2, ȳ2)α = µα. (27)

Multiplying (19) by (β − αeȳ1), (20) by (ν − ξ ȳ2), and then adding to get

(β − αeȳ1)5y1 f (x̄
1, ȳ1)(α − αeλ̄)+ (ν − ξ ȳ2)5y2 g(x̄

2, ȳ2)(α − ξ λ̄)

+ (β − αeȳ1)(5y1y1 λ̄f (x̄
1, ȳ1))(β − αeȳ1)+ (ν − ξ ȳ2)(5y2y2 λ̄g(x̄

2, ȳ2))(ν − ξ ȳ2) = 0.

Or

(β − αeȳ1)5y1 f (x̄
1, ȳ1)(α − αeλ̄)+ (ν − ξ ȳ2)5y2 g(x̄

2, ȳ2)α − ξ(ν − ξ ȳ2)5y2 λ̄g(x̄
2, ȳ2)

+ (β − αeȳ1)(5y1y1 λ̄f (x̄
1, ȳ1))(β − αeȳ1)+ (ν − ξ ȳ2)(5y2y2 λ̄g(x̄

2, ȳ2))(ν − ξ ȳ2) = 0. (28)

Using (23), (24) and (27) in (28), we obtain

(β − αeȳ1)(5y1y1 λ̄f (x̄
1, ȳ1))(β − αeȳ1)+ (ν − ξ ȳ2)(5y2y2 λ̄g(x̄

2, ȳ2))(ν − ξ ȳ2)+ µα = 0. (29)

Since α ∈ K ∗ and µ ∈ K , µα = 0, it follows from (29) that

(β − αeȳ1)(5y1y1 λ̄f (x̄
1, ȳ1))(β − αeȳ1)+ (ν − ξ ȳ2)(5y2y2 λ̄g(x̄

2, ȳ2))(ν − ξ ȳ2) 5 0, (30)

which by hypothesis (a) implies

β − αeȳ1 = 0, (31)

and

ν − ξ ȳ2 = 0. (32)

Using (31) and (32) in (21), we get µi + σ = 0, i = 1, 2, . . . , l. This on multiplying by λ̄i, i = 1, 2, . . . , l, and on using (25)
with λ̄e = 1 gives σ = 0, and therefore µ = 0.
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From (20) and (32), we have

(α − ξ λ̄)5y2 g(x̄
2, ȳ2) = 0,

which by assumption (b) gives

α − ξ λ̄ = 0. (33)

If ξ = 0, then (32) and (33) imply ν = 0 and α = 0.Whenever α = 0, (31) gives β = 0. Therefore, (α, β, ν, ξ, µ, σ ) = 0,
a contradiction to (26). Hence

ξ > 0. (34)

From (33), it is clear that αe = ξ λ̄e = ξ . Since ξ > 0, then αe is obviously strictly positive. Thus, from (31) and (32), we get

ȳ1 =
β

αe
∈ C3, and ȳ2 =

ν

ξ
∈ C4. (35)

From Eqs. (17), (31), (33) and (34),

[5x1 λ̄f (x̄
1, ȳ1)](x1 − x̄1) = 0, ∀ x1 ∈ C1. (36)

Let x1 ∈ C1. Then x1 + x̄1 ∈ C1, as C1 is a closed convex cone, and so (36) shows that ∀ x1 ∈ C1

x15x1 λ̄f (x̄
1, ȳ1) = 0,

which implies

5x1 λ̄f (x̄
1, ȳ1) ∈ C∗1 . (37)

Moreover, Eqs. (18) and (32)–(34) give

[5x2 λ̄g(x̄
2, ȳ2)](x2 − x̄2) = 0, ∀ x2 ∈ C2. (38)

Let x2 ∈ C2. Then x2 + x̄2 ∈ C2, as C2 is a closed convex cone, and so (38) implies that ∀x2 ∈ C2

x25x2 λ̄g(x̄
2, ȳ2) = 0,

which yields

5x2 λ̄g(x̄
2, ȳ2) ∈ C∗2 . (39)

Also, letting x2 = 0 and x2 = 2x̄2 simultaneously in (38) to get

x̄25x2 λ̄g(x̄
2, ȳ2) = 0. (40)

The Eqs. (35), (37), (39) and (40) give the feasibility of (x̄1, x̄2, ȳ1, ȳ2, λ̄) for (VD).
Similarly, by putting x1 = 0 and x1 = 2x̄1 simultaneously in (36), we get

x̄15x1 λ̄f (x̄
1, ȳ1) = 0.

Moreover, (22), (31) and αe > 0 yield

ȳ15y1 λ̄f (x̄
1, ȳ1) = 0.

Therefore x̄15x1 λ̄f (x̄
1, ȳ1) = ȳ15y1 λ̄f (x̄

1, ȳ1) = 0, which shows that two objective values are equal.
We shall now show the weak efficiency of (x̄1, x̄2, ȳ1, ȳ2, λ̄) for (VD), otherwise there exists a feasible solution

(u1, u2, v1, v2, λ̄) of (VD) such that[
f (x̄1, ȳ1)+ g(x̄2, ȳ2)−

[
x̄15x1 λ̄f (x̄

1, ȳ1)
]
e
]
−
[
f (u1, v1)+ g(u2, v2)−

[
u15x1 λ̄f (u

1, v1)
]
e
]
∈ −int K .

Since x̄15x1 λ̄f (x̄
1, ȳ1) = ȳ15y1 λ̄f (x̄

1, ȳ1) = 0, we have[
f (x̄1, ȳ1)+ g(x̄2, ȳ2)−

[
ȳ15y1 λ̄f (x̄

1, ȳ1)
]
e
]
−
[
f (u1, v1)+ g(u2, v2)−

[
u15x1 λ̄f (u

1, v1)
]
e
]
∈ −int K ,

which contradicts weak duality (Theorem 3.1). Hence the result. �

A converse duality theorem may merely be stated, as its proof would run analogous to that of Theorem 3.2.

Theorem 3.3 (Converse Duality). Let (ū1, ū2, v̄1, v̄2, λ̄) be a weakly efficient solution of (VD) and λ = λ̄ fixed in (VP). Let

(a′) the Hessian matrices5x1x1 λ̄f (ū
1, v̄1) and5x2x2 λ̄g(ū

2, v̄2) be negative definite; and
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(b′) the set
{
5x2 g

1(ū2, v̄2),5x2 g
2(ū2, v̄2), . . . ,5x2 g

l(ū2, v̄2)
}
be linearly independent.

Then (ū1, ū2, v̄1, v̄2, λ̄) is feasible for (VP) and the corresponding objective values of (VP) and (VD) are equal.
Also, if the assumptions of weak duality (Theorem 3.1) hold for all feasible solutions of (VP) and (VD), then (ū1, ū2, v̄1, v̄2, λ̄)

is a weakly efficient solution of (VP).

4. Self-duality

Aprimal (dual) problemhaving equivalent dual (primal) formulation is said to be self-dual, that is, if the dual can be recast
in the form of the primal. In general, (VP) and (VD) are not self-duals without some added restrictions on f , g, C1, C2, C3 and
C4. If we assume C1 = C2 = C3 = C4 = C; f : R|J1| × R|J1| → Rl and g : R|J1| × R|J1| → Rl to be skew symmetric, that is

f i(u1, v1) = −f i(v1, u1) and g i(u2, v2) = −g i(v2, u2), i = 1, 2, . . . , l,

then we shall show that (VP) and (VD) are self-duals. By recasting the dual problem (VD) as a minimization problem, we
have

(VD0) Minimize −
[
f (u1, v1)+ g(u2, v2)−

[
u15x1 λf (u

1, v1)
]
e
]

Subject to
5x1 λf (u

1, v1) ∈ C∗,

5x2 λg(u
2, v2) ∈ C∗,

u25x2 λg(u
2, v2) 5 0,

λ ∈ K ∗, e ∈ int K , λe = 1, v1 ∈ C, v2 ∈ C .

As f and g are skew symmetric,5x1 λf (u
1, v1) = −5y1 λf (v

1, u1) and5x2 λg(u
2, v2) = −5y2 λg(v

2, u2), above problem
becomes:

(VD0) Minimize
[
f (v1, u1)+ g(v2, u2)−

[
u15y1 λf (v

1, u1)
]
e
]

Subject to
−5y1 λf (v

1, u1) ∈ C∗,

−5y2 λg(v
2, u2) ∈ C∗,

u25y2 λg(v
2, u2) = 0,

λ ∈ K ∗, e ∈ int K , λe = 1, v1 ∈ C, v2 ∈ C .

This shows that (VD0) is formally identical to (VP), that is, the objective and the constraint functions are identical. Thus, the
problem (VP) becomes self-dual in the spirit of Dorn [1].
It is obvious that the feasibility of (x1, x2, y1, y2, λ) for (VP) implies the feasibility of (y1, y2, x1, x2, λ) for (VD) and vice

versa.
We now state the following self-duality theorem. Its proof follows on the lines of Weir and Mond [5].

Theorem 4.1 (Self-Duality). Let f and g be skew symmetric and let C1 = C2 = C3 = C4 = C. Then (VP) is a self-dual. Also,
if (VP) and (VD) are dual problems and (x̄1, x̄2, ȳ1, ȳ2, λ̄) is a joint weakly efficient solution, then so is (ȳ1, ȳ2, x̄1, x̄2, λ̄) and the
common objective function value is zero.

5. Conclusion

A pair of multiobjective mixed symmetric dual programs has been formulated by considering the optimization with
respect to an arbitrary cone under the assumptions of cone-invexity and cone-pseudoinvexity. It may be noted that the
symmetric duality between (VP) and (VD) can be utilized to establish mixed symmetric duality in integer and other related
programming problems.
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