Q1: Suppose that 8% of the items produced by a certain company is defective. A random sample of 10 items has been selected from the product of this company. Then find:
a) the probability that the sample contains at least 2 defective items.

Solution: Let $X=$ the number of defective items in the sample. Then $X \sim b(10,0.08)$ and $f(x)=(10 C x)(.08)^{x}(0.92)^{(10-x)}, x=0,1, \ldots, 10$.
Then $\mathrm{P}($ that the sample contains at least 2 defective items $)=P(X \geq 2)$ $=1-\mathrm{P}(\mathrm{X} \leq 1)=1-\mathrm{f}(0)-\mathrm{f}(1)=1-(0.92)^{(10)}-10(.08)(0.92)^{(9)}$
b) the probability that the sample contains at most 2 defective items given that the sample contains between 1 and 4 defective items .
Solution: P (that the sample contains at most 2 defective items given that the sample contains between 1 and 4 defective items $)=\mathrm{P}(\mathrm{X} \leq 2 / 1 \leq \mathrm{X} \leq 4)$ $=\mathrm{P}(\mathrm{X} \leq 2,1 \leq \mathrm{X} \leq 4) / \mathrm{P}(1 \leq \mathrm{X} \leq 4)=\mathrm{P}(1 \leq \mathrm{X} \leq 2) / \mathrm{P}(1 \leq \mathrm{X} \leq 4)$ $=(\mathrm{f}(1)+\mathrm{f}(2)) /(\mathrm{f}(1)+\mathrm{f}(2)+\mathrm{f}(3)+\mathrm{f}(4))$

$$
=\begin{aligned}
& \left(10(.08)(0.92)^{(9)}+10 \mathrm{C} 2(.08)^{2}(0.92)^{(8)}\right) / \\
& \left(10(.08)(0.92)^{(9)}+10 \mathrm{C} 2(.08)^{2}(0.92)^{(8)}+10 \mathrm{C} 3(.08)^{3}(0.92)^{(7)}+10 \mathrm{C} 4(.08)^{4}(0.92)^{(6)}\right.
\end{aligned}
$$

c) What is the expected number of defective items in the sample?

Solution: The expected number of defective items in the sample $=\mathrm{E}(\mathrm{X})$ $=(10)(0.08)=0.8$

Q2: Let Z has a standard normal distribution. Then find:
a) $\mathrm{P}(-0.75 \leq \mathrm{Z} \leq 1.05)$

Solution: $\mathrm{P}(-0.75 \leq \mathrm{Z} \leq 1.05)=\mathrm{A}(1.05)+\mathrm{A}(0.75)$

$$
=0.3531+0.2734=0.6265
$$

b) a such that $\mathrm{P}(\mathrm{a} \leq \mathrm{Z})=0.93$

Solution: $\mathrm{P}(\mathrm{a} \leq \mathrm{Z})=0.93$ implies that $: \mathrm{A}(\mathrm{a})+0.5=0.93$. Then $\mathrm{A}(\mathrm{a})=0.43$ Which implies that $\mathrm{a}=-1.48$

