Q1: Roll a die twice. Then:
a) find the probability that the sum of the two numbers is at least 4 .

Solution:

P (that the sum of the two numbers is at least 4$)=1-\mathrm{P}$ (that the sum of the two numbers is less than 4$)=1-\mathrm{P}($ that the sum of the two numbers is either 2 or 3$)=1-\mathrm{P}\{(1,1),(1,2),(2,1)\}=1-\frac{3}{36}=\frac{11}{12}$
b) find the probability that the sum of the two numbers is at least 4 given that their sum is at most 6 .

Solution:

$P($ that the sum of the two numbers is at least 4 given that their sum is at most 6$)=\mathrm{P}(\mathrm{A} / \mathrm{B})=\mathrm{P}(\mathrm{A} \cap \mathrm{B}) / \mathrm{P}(\mathrm{B})$
$=\mathrm{P}($ the sum of the two numbers is 4 or 5 or 6$) / \mathrm{P}($ the sum of the two numbers is at most 6)

$$
=\left(\frac{12}{36}\right) /\left(\frac{15}{36}\right)=\frac{12}{15}=0.8
$$

c) Let A denote the event where the sum of the numbers is between 6 and 8 and B denote the event where the number on the number on the $2^{\text {nd }}$ roll is either 4 or 6 . Then are A and B independent? Why?

Solution:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=\mathrm{P}\{(2,4),(3,4),(4,4),(1,6),(2,6)\}=\frac{5}{36} \\
& \mathrm{P}(\mathrm{~A})=\frac{16}{36} \text { and } \quad \mathrm{P}(\mathrm{~B})=\frac{12}{36}
\end{aligned}
$$

imply that $\quad \mathrm{P}(\mathrm{A} \cap \mathrm{B}) \neq \mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})$.
Thus A and B are not independent.

Q2: Draw 5 balls from an urn containing 10 white balls and 15 black balls. Then find the probability that you will get 3 black balls if drawing is :
a) with replacement

Solution:

$$
\begin{aligned}
& \mathrm{P}(\text { you will get } 3 \text { black balls }) \\
= & (5 \mathrm{C} 3) \mathrm{P}(\text { bbbww })=(5 \mathrm{C} 3)\left(\left(\frac{15}{25}\right)\left(\frac{15}{25}\right)\left(\frac{15}{25}\right)\left(\frac{10}{25}\right)\left(\frac{10}{25}\right)\right.
\end{aligned}
$$

b) without replacement

Solution:

$$
\begin{aligned}
& \mathrm{P}(\text { you will get } 3 \text { black balls }) \\
= & (5 \mathrm{C} 3) \mathrm{P}(\mathrm{bbbww})=(5 \mathrm{C} 3)\left(\left(\frac{15}{25}\right)\left(\frac{14}{24}\right)\left(\frac{13}{23}\right)\left(\frac{10}{22}\right)\left(\frac{9}{21}\right)\right.
\end{aligned}
$$

Or
$P($ you will get 3 black balls $)=\frac{(15 C 3)(10 C 2)}{25 C 5)}$

Q3: Given that $\mathrm{P}(\mathrm{A})=.38, \mathrm{P}(\mathrm{B})=.32$ and $\mathrm{P}(\mathrm{AUB})=.64$, then
a)find $P\left(A^{\prime} / B^{\prime}\right)$

Solution: $P\left(A^{\prime} / B^{\prime}\right)=\frac{P\left(A^{\prime} \cap B^{\prime}\right)}{P\left(B^{\prime}\right)}=\frac{1-P(A \cup B)}{1-P(B)}=\frac{1-.64}{1-.32}=\frac{36}{68}$
b) Are A and B independent? Why?

Solution: No, because $P\left(A^{\prime} / B^{\prime}\right) \neq P\left(A^{\prime}\right)$
Or because $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
implies that $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=.38+.32-.64=.06 \neq \mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})=(.38)(.32)$

