Q1: Roll a die twice. Then:
a) find the probability that the sum of the two numbers is at least 4 .

Solution:

$\mathrm{P}($ that the sum of the two numbers is at least 4$)=1-\mathrm{P}($ that the sum of the two numbers is less than 4$)=1-P($ that the sum of the two numbers is either 2 or 3$)=1-\mathrm{P}\{(1,1),(1,2),(2,1)\}=1-\frac{3}{36}=\frac{11}{12}$
b) find the probability that the sum of the two numbers is at least 4 given that their sum is at most 5 .

Solution:

$P($ that the sum of the two numbers is at least 4 given that their sum is at most 5$)=\mathrm{P}(\mathrm{A} / \mathrm{B})=\mathrm{P}(\mathrm{A} \cap \mathrm{B}) / \mathrm{P}(\mathrm{B})$
$=P($ the sum of the two numbers is 4 or 5$) / \mathrm{P}$ (the sum of the two
numbers is at most 5)

$$
=\left(\frac{7}{36}\right) /\left(\frac{10}{36}\right)=\frac{7}{10}=0.7
$$

c) Let A denote the event where the sum of the numbers is between 5 and 7 and B denote the event where the number on the number on the $2^{\text {nd }}$ roll is either 3 or 5 . Then are A and B independent? Why?

Solution:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=\mathrm{P}\{(2,3),(3,3),(4,3),(1,5),(2,5)\}=\frac{5}{36} \\
& \mathrm{P}(\mathrm{~A})=\frac{15}{36} \text { and } \quad \mathrm{P}(\mathrm{~B})=\frac{12}{36} \\
& \text { imply that } \mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B}) .
\end{aligned}
$$

Thus A and B are independent.

Q2: Draw 5 balls from an urn containing 8 white balls and 17 black balls. Then find the probability that you will get 3 black balls if drawing is :
a) with replacement

Solution:

P (you will get 3 black balls)
$=(5 \mathrm{C} 3) \mathrm{P}(\mathrm{bbbww})=(5 \mathrm{C} 3)\left(\left(\frac{17}{25}\right)\left(\frac{17}{25}\right)\left(\frac{17}{25}\right)\left(\frac{8}{25}\right)\left(\frac{8}{25}\right)\right.$
b) without replacement

Solution:

$$
\begin{aligned}
& \mathrm{P}(\text { you will get } 3 \text { black balls }) \\
= & (5 \mathrm{C} 3) \mathrm{P}(\mathrm{bbbww})=(5 \mathrm{C} 3)\left(\left(\frac{17}{25}\right)\left(\frac{16}{24}\right)\left(\frac{15}{23}\right)\left(\frac{8}{22}\right)\left(\frac{7}{21}\right)\right.
\end{aligned}
$$

Or
$\mathrm{P}($ you will get 3 black balls $)=\frac{(17 \mathrm{C} 3)(8 \mathrm{C} 2)}{25 \mathrm{C} 5)}$

Q3: Given that $\mathrm{P}(\mathrm{A})=.42, \mathrm{P}(\mathrm{B})=.35$ and $\mathrm{P}(\mathrm{AUB})=.75$, then
a)find $P\left(A^{\prime} / B^{\prime}\right)$

Solution: $\mathrm{P}\left(\mathrm{A}^{\prime} / \mathrm{B}^{\prime}\right)=\frac{\mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)}{\mathrm{P}\left(\mathrm{B}^{\prime}\right)}=\frac{1-\mathrm{P}(\mathrm{A} \cup \mathrm{B})}{1-\mathrm{P}(\mathrm{B})}=\frac{1-.75}{1-.35}=\frac{25}{65}$
b) Are A and B independent? Why?

Solution: No, because $P\left(A^{\prime} / B^{\prime}\right) \neq P\left(A^{\prime}\right)$

Or because $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
implies that $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=.35+.42-.75=.02 \neq \mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})=(.35)(.42)$

