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Abstract

The property of smallness for Π0
1 classes is introduced and is in-

vestigated with respect to Medvedev and Muchnik degree. It is shown
that the property of containing a small Π0

1 class depends only on the
Muchnik degree of a Π0

1 class. A comparison is made with the idea of
thinness for Π0

1 classes

1 Introduction

This paper is a continuation of the project to study Π0
1 classes with

reference to their Medvedev and Muchnik degrees. The basic concepts
and results in this area have been outlined in [3], [4], [2] and [5]. This
paper is an adaptation of Chapter 4 in [3]. We also review the basic
ideas below.

It is known that various structural properties of computable bi-
nary trees affect the Medvedev and Muchnik degrees of the associated
Π0

1 class. For example, if a Π0
1 class has positive Lebesgue measure

then it is necessarily Muchnik (and therefore Medvedev) incomplete.
Similarly if it is thin. Simpson has shown that the property of pro-
ductiveness is equivalent to Medvedev completeness. In this paper we
define a new property of trees and show that it guarantees Muchnik
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and Medvedev incompleteness. This work is informed by Post’s ef-
fort [15] to construct a non-zero c.e. degree strictly below 0́ . Post’s
attempt was ultimately unsuccessful and the construction of such a de-
gree needed more sophisticated methods. A discussion of these issues
can be found in [20] chapter V, or [17] §9.7.

Perhaps surprisingly, Post’s methods are more conducive to solving
the corresponding problem in the Medvedev and Muchnik lattices.
Here we define two new properties also guaranteeing incompleteness
and having properties not shared by thin Π0

1 classes. Both of these
properties relate to some conception of the size of a Π0

1 class.

1.1 The Medvedev and Muchnik Lattices of
Π0

1 classes

We denote the set of natural numbers by ω. ωω is the set of func-
tions from ω to ω and the set of functions from ω to the set {0, 1}
is denoted 2ω. Subsets of ω are identified with their characteristic
functions without further comment. The corresponding sets of finite
sequences are denoted ω<ω and 2<ω respectively. Each of these sets
are given the standard (i.e. product) topology. For other unexplained
computability-theoretic notation refer to [20].

Definition 1.1. A Π0
1 class P is a subclass of ωω of the following

form:

f ∈ P ⇔ ∀n R(n, f),

where R( , ) ⊆ ω × ωω is a computable predicate.

A second and very useful characterisation of Π0
1 classes is as follows:

Theorem 1.2. P ⊆ ωω is a Π0
1 class if and only if it is the set of

infinite paths through some computable tree.

Definition 1.3. If P ⊆ ωω is a Π0
1 class, then the extendible nodes

of P , denoted Ext(P ), is the set

{σ ∈ 2<ω : ∃f ∈ P f ⊃ σ}.

Definition 1.4. A Π0
1 class P is computably bounded (c.b.) if there

is a computable function g such that, for all f ∈ P, g(n) > f(n).

Definition 1.5. A Π0
1 class P is special if it is non-empty and con-

tains no computable element.
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In this paper we are mainly concerned with special c.b. Π0
1 classes.

We will study these classes from the point of view of their Muchnik
and Medvedev degree. These are ideas that can be applied to arbitrary
subclasses of ωω.

Definition 1.6. If ∅ 6= X,Y ⊆ ωω then we say X is Medvedev
reducible to Y (denoted X 6M Y ) if there is a computable functional
Φ : Y → X.

Definition 1.7. If ∅ 6= X,Y ⊆ ωω, then we say X is Muchnik re-
ducible to Y (denoted X 6w Y ) if, for every f ∈ Y , there is a g ∈ X
such that g 6T f .

We say that X is Muchnik equivalent to Y (X ≡w Y ) if X 6w Y
and Y 6w X. The Muchnik degree of X, degw(X), is the set {Y :
X ≡w Y }. X <w Y meansX 6w Y andX 6≡w Y . There is an induced
partial ordering on Muchnik degrees, namely degw(X) 6 degw(Y ) if
X 6w Y . Corresponding notation is used for Medvedev degrees.

Both of these partial orders exhibit a distributive lattice struc-
ture with the least upper bound and greatest lower bound defined as
follows.

Let X,Y ⊆ ωω, and f ∈ X, g ∈ Y . Define f ⊕ g ∈ ωω so that for
all n ∈ ω,

f ⊕ g(n) =

{
f(n/2) if n is even
g((n− 1)/2) if n is odd

We now define two operations:

X ∨ Y = {f ⊕ g : f ∈ X, g ∈ Y }

X ∧ Y = {〈0〉af : f ∈ X} ∪ {〈1〉ag : g ∈ Y },

where 〈i〉af denotes the element h of ωω such that h(0) = i and
h(n+ 1) = f(n) for all n.

These operations induce least upper bounds and greatest lower
bounds on the sets of Muchnik and Medvedev degrees. That is:

degM (P ) ∧ degM (Q) = degM (P ∧Q)

degM (P ) ∨ degM (Q) = degM (P ∨Q)
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and similarly for the Muchnik degrees.
We now concentrate our attention on Medvedev and Muchnik re-

ducibilities as they relate to the set of non-empty c.b. Π0
1 classes. We

list some basic results. Details can be found in [19].
• If P and Q are non-empty c.b. Π0

1 classes then so are P ∧Q and
P ∨Q. The lattices of the Medvedev (Muchnik) degrees of non-empty
c.b. Π0

1 classes are denoted PM and Pw respectively.
• PM and Pw are distributive lattices, each with a maximum and

minimum element. The maximum element in both cases is the de-
gree of PA - the set of completions of Peano arithmetic. Another
representative of the maximum degree is the set:

DNR2 = {f ∈ 2ω : ∀n {n}(n) 6= f(n)},

which is readily seen to be a Π0
1 class. Any Π0

1 class with a computable
element is a representative of the minimum degree. 2ω will be the
conventional representative of this degree.

• Any non-empty c.b. Π0
1 class is computably homeomorphic to a

Π0
1 subclass of 2ω. We can henceforth restrict our attention to non-

empty Π0
1 subclasses of 2ω.

We now introduce some notation that will be useful for the pur-
poses of this paper.

Notation:

‖X‖ = the cardinality of X.

If f ∈ ωω, f [n] = 〈f(0), f(1), . . . f(n− 1)〉.

If P ⊆ ωω, P [n] = {f [n] : f ∈ P}.

If X ⊆ ω<ω, X[n] = {σ ∈ X : |σ| = n}.

If P ⊆ ωω, P [< n] = {f [m] : m < n, f ∈ P}, and similarly for
P [6 n], X[< n] and X[6 n].

{e}τ [n] is the partial sequence γ from {0, 1, . . . n − 1} to ω such that
γ(m) = {e}τ (m) if this is defined and is undefined otherwise. In
particular, if T ⊆ 2<ω then {e}τ [n] ∈ T implies {e}τ (m) ↓ for all
m < n.

|{e}τ | = max{k : ∀m < k, {e}τ (m)↓}.
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2 Small Π0
1 classes

Definition 2.1. P ⊆ ωω is small if it is non-empty, closed and if
there is no computable function, g, such that for all n, ‖P [g(n)]‖ > n.

Notice that any finite subclass of ωω is small. In fact, one can
think of a closed subclass of ωω as being small exactly when there is
no computable function witnessing its infinitude (in the above sense
of witnessing). It will be shown that the property of smallness is
invariant under computable homeomorphisms. Rather than arbitrary
small subclasses of ωω, we will primarily be concerned with small
computably bounded Π0

1 subclasses of ωω. In fact, as Corollary 2.13
will show, we can concentrate on small Π0

1 subclasses of 2ω without
losing generality.

It will be useful here to make the following observations which
follow easily from the definitions of ∨ and ∧ as operations on Π0

1

classes.

Observation 2.2. Let P and Q be c.b. Π0
1 subclasses of ωω. Then

for all n,

‖P ∨Q[2n]‖ = ‖P [n]‖ · ‖Q[n]‖

and
‖P ∧Q[n+ 1]‖ = ‖P [n]‖+ ‖Q[n]‖.

Theorem 2.3. All Medvedev (and therefore Muchnik) degrees of c.b. Π0
1

classes have a representative that is not small.

Proof. For any c.b. Π0
1 class P ⊆ ωω, P ∨ 2ω is never small because

for all n,
‖P ∨ 2ω[2n]‖ = ‖P [n]‖ · ‖2ω[n]‖ > 2n > n.

Theorem 2.4. DNR2 is not small.

Proof. Let 〈ei〉i>0 be a computable sequence of indices for the empty
function. Then for all σ ∈ DNR2[ei], σa〈0〉 and σa〈1〉 are in DNR2[ei+
1]. Arguing by induction, and using the fact that DNR2[n] is increas-
ing in n we have ‖DNR2[ei + 1]‖ > 2i+1 for all i. If h(m) = the least
k such that 2k+1 > m, then

‖DNR2[eh(m) + 1]‖ > 2h(m)+1 > m
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for all m ∈ ω. m 7→ eh(m) + 1 is clearly a computable function, so
DNR2 is not small.

Definition 2.5. If A,B ⊆ ω, then the separating class of A and B,
denoted S(A,B), is the set

{X ⊆ ω : X ⊇ A and X ∩B = ∅}.

If A∩B = ∅ then S(A,B) is non-empty and if A and B are c.e. sets
then S(A,B) is a Π0

1 class.

Theorem 2.6. A small Π0
1 class with no computable path exists.

Proof. Recall that A ⊆ ω is hypersimple (h-simple) if it is c.e. and the
principal function (i.e. the function that lists a set in increasing order)
of its complement is not dominated by any computable function. If A
is h-simple and A0 and A1 are disjoint c.e. sets such that A0∪A1 = A,
then we claim that S = S(A0, A1) is small. Suppose S were not
small, witnessed by the computable function, g. S branches at level
n (that is, S[n + 1] > S[n]) precisely when n ∈ A. For such an n,
‖S[n+ 1]‖ = 2‖S[n]‖. So if p is the principal function of A, then p
has the property that ‖S[p(n)]‖ = 2n. But ‖S[g(2n + 1)]‖ > 2n + 1.
So the function n 7→ g(2n + 1) is a computable function dominating
p, contradicting the fact that A is h-simple.

A0 and A1 can be constructed to ensure S(A0, A1) has no com-
putable element (see Theorem 1 [14]).

The next theorems show that the idea of smallness works well with
the Muchnik and Medvedev operations.

Theorem 2.7. P and Q are small Π0
1 classes if and only if P ∧Q is

a small Π0
1 class.

Proof. We make repeated use of Observation 2.2. Suppose P ∧Q were
small and either P or Q were not small. Without losing generality,
let it be P . Let f be computable such that ‖P [f(n)]‖ > n for all n.
Then ‖P ∧Q[f(n+ 1)]‖ > ‖P [f(n)]‖ > n and P ∧Q is not small. So
if P ∧Q is small, so are both P and Q.

Conversely, suppose P andQ are small and P∧Q is not small. Let g
be a strictly positive computable function such that ‖P ∧Q[g(n)]‖ > n
for all n. For all m > 0, ‖P ∧Q[m]‖ = ‖P [m− 1]‖ + ‖Q[m− 1]‖ so
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for all n, ‖P [g(n)− 1]‖ > n/2 or ‖Q[g(n)− 1]‖ > n/2. Consider the
set

X = {n : ‖P [g(n)− 1]‖ < n/2}.

X is c.e. as P is a Π0
1 class and it is infinite as P is small (if it were

finite then the set {n : ‖P [g(n)− 1]‖ > n/2} would be cofinite, and,
modulo finitely many arguments, the function n 7→ g(2n) − 1 would
prove that P was not small). So X has an infinite computable subset
Y . For all y ∈ Y , ‖Q[g(y)− 1]‖ > y/2. If h(n) = the least y ∈ Y such
that y > 2n, then

∀n ‖Q[g(h(n))− 1]‖ >
h(n)

2
> n,

contradicting the smallness of Q.

Theorem 2.8. P and Q are small if and only if P ∨Q is small.

Proof. The proof follows the proof of Theorem 2.7.
For one direction assume that either P or Q is not small. Let

it be P without losing generality. Let f be computable such that
‖P [f(n)]‖ > n for all n. Using Observation 2.2 we have for all n,

‖P ∨Q[2f(n)]‖ = ‖P [f(n)]‖ · ‖Q[f(n)]‖ > ‖P [f(n)]‖ > n.

The function n 7→ 2f(n) is computable so P ∨Q is not small.
Conversely, assume that P∨Q is not small and let g be computable

and such that ‖P ∨Q[g(n)]‖ > n for all n. The function n 7→ ‖P [n]‖
is increasing in n so we also have ‖P ∨Q[2g(n)]‖ > n and therefore
‖P [g(n)]‖·‖Q[g(n)]‖ > n. So for all n, ‖P [g(n)]‖ >

√
n or ‖Q[g(n)]‖ >√

n. As before, the set {n : ‖P [g(n)]‖ <
√
n } is c.e. because P is Π0

1

and it is infinite because P is small. The proof is then similar to the
proof of Theorem 2.7

Theorem 2.9. For every small special Π0
1 class P there exists a small

Π0
1 class Q such that P >M Q >M 2ω. This is also true with >w

replacing >M .

Proof. For this we first construct a small Π0
1 class S using a method

similar to the one used in [10]. A uniformly computable sequence of
maps, ψs : 2<ω → 2<ω is constructed with the properties:

1. for all s ∈ ω, range(ψs+1)⊆ range(ψs)
2. for all s ∈ ω and σ ∈ 2<ω, ψs(σa〈0〉) and ψs(σa〈1〉) are incom-

patible extensions of ψs(σ)
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3. for all σ ∈ 2<ω, lims ψs(σ) exists.

The range of each ψs determines a computable tree Ts after closing
under intitial segments and S is then [

⋂
s Ts]. For full details on this

method see [10], [3] or [4].
By controlling the construction of the sequence 〈ψs〉s we can ensure

that S has the property that for all f ∈ S and g ∈ P , f 6>T g. This
will mean that S 6>w P . We can also ensure that S has no computable
element. The construction of Theorem 4.7 in [10] is sufficient for this.
We only need to introduce requirements that ensure S is small. These
are as follows (for convenience we begin our enumeration of the partial
computable functions at e = 2):

Re ≡ {e}(e)↓⇒ ‖S[{e}(e)]‖ < e.

An exhaustive priority ordering is given to all requirements. Re

will require attention at stage s if {e}s(e) ↓ and ‖Ts[{e}s(e)]‖ > e.
To ensure that each requirement gets satisfied, we wait for a stage at
which Re is the highest priority requirement requiring attention. To
satisfy Re we take the largest number k such that 2k < e (the reason
we require e > 2). Let i be the least number such that for all τ of
length k+i, |ψs(τ)| > {e}(e). If we let 0i denote the string of i zeroes,
we define,

ψs+1(ν) =

{
ψs(σa0iaν ′) if ν = σaν ′ and |σ| = k

ψs(ν) if |ν| < k

This ensures that ‖Ts+1[{e}(e)]‖ < e and hence that ‖S[{e}(e)]‖ <
e. So the function {e} cannot be a computable witness to S’s not being
small. Each requirement will be satisfied for all time after receiving
attention so this construction will result in a small Π0

1 class with the
required properties. Finally, S ∧ P will be small by Theorem 2.7 and

P >M S ∧ P >M 2ω

because S 6>w P and neither S nor P has a computable element. This
also establishes that

P >w S ∧ P >w 2ω.
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Theorem 2.10. Let P and Q be infinite c.b. Π0
1 subclasses of ωω. If

P is small, and if {e} :P → Q is a computable surjection, then Q is
small.

Proof. Suppose P , Q and {e} are as stated. Let 〈Ts〉s be a computable
sequence of computable trees with no end nodes such that

⋂
s Ts =

Ext(P ). Let s and l be computable functions such that for all n

∀τ ∈ Ts(n)[l(n)], |{e}τ
s(n)| > n.

To see that such an l and s exist notice that the compactness of P
implies that there is a k such that ∀τ ∈P [k], |{e}τ | > n. Because P is
computably bounded a search will eventually find two numbers with
the required property for a given n.

Now suppose Q is not small, witnessed by the computable function
g. For all n,

∀τ ∈ Ts(g(n))[l(g(n))], |{e}τ | > g(n).

As {e} is onto,

∀σ ∈ Q[g(n)] ∃τ ∈ P [l(g(n))] {e}τ ⊇ σ.

Therefore,
‖P [l(g(n))]‖ > ‖Q[g(n)]‖ > n.

l(g(n)) is computable so this contradicts the smallness of P .

Corollary 2.11. If P >M Q are Π0
1 subclasses of ωω, and if P is

c.b. and contains a small Π0
1 subclass, then Q contains a small Π0

1

subclass.

Proof. Suppose {e} : P → Q is computable. The image of any c.b. Π0
1

class is also Π0
1 so if S ⊆ P is Π0

1 and small, then the theorem implies
that the image of S under {e} is a small Π0

1 subclass of Q.

Corollary 2.12. Smallness is preserved by computable homeomor-
phisms.

Proof. All homeomorphisms are surjective.

Corollary 2.13. Any small c.b. Π0
1 subclass of ωω is computably

homeomorphic to a small Π0
1 subclass of 2ω.
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Proof. Any c.b. Π0
1 subclass of ωω is computably homeomorphic to a

Π0
1 subclass of 2ω and such a homeomorphism preserves smallness.

Corollary 2.13 allows us to move from small c.b. Π0
1 subclasses

of ωω to small Π0
1 subclasses of 2ω without losing generality (up to

computable homeomorphism).

Corollary 2.14. No Medvedev complete Π0
1 subclass of 2ω has a small

Π0
1 subclass.

Proof. If some such Medvedev complete Π0
1 class contained a small

Π0
1 subclass S, then S would also be Medvedev complete. But all

Medvedev complete Π0
1 subclasses of 2ω are computably homeomor-

phic [19]. Therefore S would be computably homeomorphic to DNR2,
which would then be small, contradicting Theorem 2.4.

The following observation by Simpson allows us to transfer a lot of
these theorems to the Muchnik lattice. In this respect it is a central
lemma in the subject.

Lemma 2.15 (Simpson). If P,Q ⊆ 2ω are Π0
1, and if P >w Q, then

there exists a Π0
1 class, P ′ ⊆ P , such that P ′ >M Q.

Proof. Let f ∈ P be of hyperimmune-free degree. Such an f exists
by the hyperimmune-free basis theorem, [10]. Then for some g ∈ Q,
f >T g. The proof of Theorem VI.5.5 [13] (attributed to D.A. Martin)
then implies f >tt g. Proposition III.3.2 [13] (Trakhtenbrot, Nerode)
then states we can find a total computable functional Φ taking f to
g. Then Φ−1(Q) ∩ P is a non-empty Π0

1 subclass of P , and this is a
suitable choice for P ′ because Φ(Φ−1(Q) ∩ P ) ⊆ Q.

Corollary 2.16. If P ⊆ 2ω is a non-empty Π0
1 class with a small Π0

1

subclass and P >w Q, then Q has a small Π0
1 subclass.

Proof. Let S ⊆ P be small and let S′ ⊆ S be a Π0
1 class such that

S′ >M Q. S′ is necessarily small so Q must contain a small Π0
1 class.

This means that the property of containing a small Π0
1 class is a

property of Muchnik degree — that is, if P and Q are Π0
1 classes of

the same Muchnik degree then P contains a small Π0
1 class if and only

if Q contains a small Π0
1 class.
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Corollary 2.17. No Muchnik complete Π0
1 subclass of 2ω has a small

Π0
1 subclass.

Proof. No Π0
1 subclass of DNR2 is small as any subclass must be

Medvedev complete, and therefore computably homeomorphic to DNR2.
Any Muchnik complete Π0

1 subclasses of 2ω is Muchnik equivalent to
DNR2 and therefore cannot contain a small Π0

1 class.

Lemma 2.15 also has corollaries for the study of the upper semi-
lattice of c.e. Turing degrees:

Corollary 2.18. For any h-simple set X and any c.e. partition X0 t
X1 = X there exists a separating set of X0 and X1 that is not of PA
degree.

Proof. If X is h-simple then S(X0, X1) is small. By Corollary 2.17, it
can not be Muchnik complete and so must contain an element not of
PA degree.

The following is a somewhat more general consequence of the proof
of Lemma 2.15.

Corollary 2.19. If S ⊆ 2ω is a small Π0
1 class and P ⊆ 2ω is Π0

1

with no small Π0
1 subclass, then no hyperimmune-free element of S

computes an element of P .

Many of the previous results can be summed up in the following
way.

Theorem 2.20. The set of Medvedev degrees:

I = {degM (P ) : P has a small Π0
1 subclass}

forms a (proper, nontrivial) prime ideal in PM .

Proof. First note that if P ≡M Q and P has a small Π0
1 subclass then

so does Q by Corollary 2.11, so in what follows we are free to choose
arbitrary representatives of Medvedev degrees.

i. Suppose degM (P ) ∈ I and Q ⊆ 2ω is a Π0
1 class such that

P >M Q. Corollary 2.11 then implies degM (Q) ∈ I.

ii. If degM (P ), degM (Q) ∈ I and S1 ⊆ P and S2 ⊆ Q are small,
then S1 ∨ S2 ⊆ P ∨ Q and by Theorem 2.8, S1 ∨ S2 is small. So
degM (P ∨Q) ∈ I.
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iii. No Medvedev complete Π0
1 class has a small Π0

1 subclass by
Corollary 2.14, so I is proper.

iv. I is non-trivial by Theorem 2.6

v. Suppose P ⊆ 2ω and Q ⊆ 2ω are Π0
1 and such that degM (P ∧

Q) ∈ I. If S ⊆ P ∧Q were small, then either {f : 〈0〉af ∈ S} ∩ P or
{f : 〈1〉af ∈ S} ∩Q would be non-empty and consequently, small. So
either degM (P ) or degM (Q) is in I and I is prime.

Using an argument similar to that used in Corollary 2.17, we can
show that Theorem 2.20 is true in Pw as well.

Theorem 2.21. The set of Muchnik degrees:

J = {degw(P ) : P has a small Π0
1 subclass}

forms a (proper, nontrivial) prime ideal in Pw.

Proof. ii, iv and v are proved exactly as in Theorem 2.20. iii follows
from Corollary 2.17. For i, suppose degw(P ) ∈ J and Q 6w P . Let
S ⊆ P be Π0

1 and small and let f ∈ S be hyperimmune-free. As in
Corollary 2.17, there is a total computable functional, Φ, such that
Φ(f) ∈ Q. Thus Φ[S]∩Q is non-empty and therefore a small subclass
of Q.

So far we have described only one Muchnik (Medvedev) degree
that is not in J (I) - namely the degree of DNR2. There are in fact
infinitely many such degrees:

Theorem 2.22. The sets PM r I and Pw r J have no minimal
elements.

Proof. Let P be any Π0
1 class with no small subclass. By Theorem 1

in [4] we can find Π0
1 classes P0 and P1 such that P0, P1 <M P and

P0 ∨ P1 ≡M P (similarly for 6w). If both P0 and P1 contained small
subclasses then so would P by Theorem 2.8.

We will now consider alternative characterisations of smallness for
computably bounded Π0

1 classes.

Definition 2.23. If P ⊆ 2ω is Π0
1, then let Br(P ), the branching

nodes of P , be the set

{σ ∈ Ext(P ) : σa〈0〉 ∈ Ext(P ) and σa〈1〉 ∈ Ext(P )}.
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Observation 2.24. ‖Br(P )[< n]‖+ 1 = ‖P [n]‖.

Proof. This is just a matter of counting. Each branching node below
a given level of Ext(P ) increases the number of extendible nodes at
that level by one.

We will need the following well-known concepts.

Definition 2.25. A disjoint strong array is a computable sequence of
pairwise disjoint canonically indexed finite sets.

Definition 2.26. X ⊆ ω is hyperimmune (h-immune) if there is no
disjoint strong array 〈Df(n)〉n such that for all n, Df(n) ∩X 6= ∅.

It is well known (see for example Proposition III.3.8 [13]) that X
is h-immune if and only if its principal function is not dominated by
any computable function. This means a c.e. set Y is h-simple if and
only if Y is h-immune.

Theorem 2.27. For any Π0
1 class, P ⊆ 2ω, P is small if and only if

Br(P ) is h-immune.

Proof. ⇒) Assume Br(P ) is not h-immune. Let f(n) be a total com-
putable function and let 〈Df(n)〉n>0 be a disjoint strong array such
that Df(n) ∩ Br(P ) 6= ∅ for all n ∈ ω. For all n ∈ ω, define a total
computable function g by:

g(n) = max{|σ| : σ ∈
n⋃

i=0

Df(i)}.

Then for all n ∈ ω, ‖Br(P )[6 g(n)]‖ > n+1. Therefore, by observation
2.24, for all n, ‖P [g(n) + 1]‖ = ‖Br(P )[6 g(n)]‖+ 1 > n+ 2 > n. So
P is not small.

⇐) Assume P is not small and the fact is witnessed by a strictly
increasing, computable function, h. We now construct the required
strong array as follows: first define the computable function:

ĥ(n) =

{
h(0) if n = 0
h(2ĥ(n−1)+1) if n 6= 0.

For any Π0
1 class Q ⊆ 2ω and any m ∈ ω, we have 2m+1 > ‖Q[m]‖ and

so we get, for all n,

‖P [ĥ(n+ 1)]‖ > 2ĥ(n)+1 > ‖P [ĥ(n)]‖,

13



and so there must be a σ ∈ Br(P ) such that ĥ(n) 6 |σ| < ĥ(n + 1).
Now define:

Df(n) = {σ : ĥ(n) 6 |σ| < ĥ(n+ 1)}.

So 〈Df(n)〉n>0 is a strong array and for each n, Df(n)∩Br(P ) 6= ∅.

Notice that Br(P ) is a co-c.e. set so that P is small if and only if
Br(P ) is hypersimple.

There is another, closely related characterisation of smallness.

Definition 2.28. n ∈ ω is said to be a branching level of P if there
exists a σ ∈ Br(P ) such that |σ| = n. We denote the set of branching
levels of P by Brl(P )

We observe the following which will be used later.

Observation 2.29. If X is a subset of ω and X0, X1 is a partion of
X, and S = S(X0, X1), then Brl(S) = X.

Theorem 2.30. P ⊆ 2ω is small if and only if Brl(P ) is hypersimple.

Proof. First observe that Brl(P ) is c.e. for any Π0
1 class P . Assume

now that Brl(P ) is not hypersimple. Let 〈Df(n)〉n be a disjoint strong
array such that for all n, Df(n) ∩ Brl(P ) 6= ∅. Let Dg(n) = {σ ∈ 2<ω :
|σ| ∈ Df(n)}. Then 〈Dg(n)〉n forms a disjoint strong array and for all
n, Dg(n) ∩ Br(P ) 6= ∅.

Conversely, suppose 〈Df(n)〉n is a disjoint strong array such that
for all n, Df(n)∩Br(P ) 6= ∅. Let Dg(n) = {|σ| : σ ∈ Df(n)}. 〈Dg(n)〉n is
not a disjoint array but it can easily be made so. Let ϕ(n) be defined
recursively as follows: ϕ(0) = 0 and

ϕ(n+ 1) = the least k such that Dg(k) ∩
⋃
i6n

Dg(ϕ(i)) = ∅.

Then 〈Dg(ϕ(n))〉n is the required disjoint strong array.

3 Very Small Π0
1 classes

The definition of smallness can be strengthened to define a proper
subset of the set of small Π0

1 classes. This new property will have
much in common with smallness.

14



Definition 3.1. P ⊆ ωω is very small if it is non-empty, closed and
the function

n 7→ the least k such that ‖P [k]‖ > n

dominates every computable function.

The similarity to smallness can be made more explicit by the ob-
servation that P is small if and only if the function n 7→ the least k
such that ‖P [k]‖ > n is not dominated by any computable function.
This also proves that every very small class is small.

Now theorems analogous to Theorems 2.6 - 2.30 can be established.

Theorem 3.2. A very small Π0
1 class with no computable path exists.

Proof. Recall that a c.e. set, X, is dense simple if the principal func-
tion of its complement dominates every computable function. Now,
if A is dense simple and A0 and A1 are disjoint c.e. sets such that
A0 ∪ A1 = A, then S(A0, A1) is very small by an argument similar
to 2.6. A0 and A1 can be constructed to ensure S(A0, A1) has no
computable element.

Theorem 3.3. P and Q are very small Π0
1 subclasses of ωω if and

only if P ∧Q is a very small Π0
1 subclass of ωω.

Proof. ‖P ∧Q[n+ 1]‖ > ‖P [n]‖, ‖Q[n]‖ so if either P or Q were not
very small then neither would P ∧Q be.

Conversely, suppose that P ∧Q is not very small. Let g be a com-
putable function such that ‖P ∧Q[g(n)]‖ > n for infinitely many n.
Then for infinitely many n, either ‖P [g(n)− 1]‖ > n/2 or ‖Q[g(n)− 1]‖ >
n/2. Therefore either {n : ‖P [g(n)− 1]‖ > n/2} or {n : ‖Q[g(n)− 1]‖ >
n/2} is infinite. Without losing any generality we can assume that
{n : ‖Q[g(n)− 1]‖ > n/2} is infinite. Then either {2n : n ∈ ω} ∩
{n : ‖Q[g(n)− 1]‖ > n/2} is infinite, or {2n + 1 : n ∈ ω} ∩ {n :
‖Q[g(n)− 1]‖ > n/2} is infinite. If the first case holds, then for in-
finitely many n ‖Q[g(2n)− 1]‖ > n. If the second case holds, then for
infinitely many n ‖Q[g(2n+ 1)− 1]‖ > n+ 1/2 > n. In either case Q
is not very small.

Theorem 3.4. P and Q are very small Π0
1 subclasses of ωω if and

only if P ∨Q is a small Π0
1 ubclass of ωω.
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Proof. The proof imitates Theorem 3.3.
‖P ∨Q[2n]‖ > ‖Q[n]‖, ‖P [n]‖ so if either P or Q were not very

small, then neither would P ∨Q be.
For the other direction let g be such that ‖P ∨Q[g(n)]‖ > n for

infinitely many n. The function n 7→ ‖P [n]‖ is increasing in n so we
also have ‖P ∨Q[2g(n)]‖ > n. Using the definition of ∨, for infinitely
many n either ‖Q[g(n)]‖ >

√
n or ‖P [g(n)]‖ >

√
n. Assume as before

that X = {n : ‖Q[g(n)]‖ >
√
n} is infinite. Let {n0, n1, n2 . . . } be an

infinite subset of ω such that for all i there exists a k ∈ X such that
n2

i 6 k < (ni + 1)2. Then for all i

‖Q[g((ni + 1)2)]‖ > ‖Q[g(k)]‖ for some k ∈ X
>

√
k

> ni.

So there are infinitely many n such that ‖Q[g((n+ 1)2)]‖ > n and Q
is not very small.

Theorem 3.5. For every very small special P ⊆ 2ω there exists a
very small Q such that 2ω <M Q <M P . This is also true with <w

replacing <M .

Proof. We will use the same kind of construction as in Theorem 2.9.
We will construct a Π0

1 class V ⊆ 2ω and require that it has no com-
putable path and that no element of V computes an element of P . We
then combine these requirements with the following to ensure that it
is very small. This time the requirements will be indexed by n and
e 6 n:

R〈n,e〉 ≡ {e}(n)↓⇒ ‖V [{e}(n)]‖ < n

R〈n,e〉 requires attention at stage s if {e}s(n)↓ and ‖Ts[{e}s(n)]‖ >
n. Suppose R〈n,e〉 is the highest priority requirement requiring atten-
tion at stage s. Take k to be the greatest natural number such that
2k < n. Let i be the least natural number such that,

|ψs(τ)| > {e}(n)

for all τ of length k + i. Now define,

ψs+1(ν) =

{
ψs(σa0iaν ′) if ν = σaν ′ and |σ| = k,

ψs(ν) if |ν| < k
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Each requirement is satisfied for all time after receiving attention
once. lims(σ) exists for all σ as, for each n, there are only finitely
many associated values of e and, as n becomes larger, so does the
value of k. Therefore, for any σ, k will eventually become larger than
|σ| forcing ψs+1(σ) to be equal to ψs(σ) from that stage on.

Theorem 3.6. Let P and Q be Π0
1 subclasses of ωω. If P is c.b. and

very small, and if {e} :P → Q is a computable surjection, then Q is
very small.

Proof. The proof is virtually identical to Theorem 2.10.

Corollary 3.7. If P >M Q are Π0
1 subclasses of ωω, and if P is

c.b. and contains a very small Π0
1 subclass, then Q contains a very

small Π0
1 subclass.

Proof. See the proof of Corollary 2.11

Corollary 3.8. Very smallness is preserved by computable homeo-
morphisms.

Corollary 3.9. Any very small c.b. Π0
1 subclass of ωω is computably

homeomorphic to a very small Π0
1 subclass of 2ω.

Theorem 3.10. The set of Medvedev degrees:

K = {degM (P ) : P has a very small Π0
1 subclass}

forms a (proper, nontrivial) prime ideal in PM .

Proof. The proof of this is essentially the same as Theorem 2.20.

Theorem 3.11. The set of Muchnik degrees:

L = {degw(P ) : P has a very small Π0
1 subclass}

forms a (proper, nontrivial) prime ideal in Pw.

Proof. See the proof of Theorem 2.21.

Theorem 3.12. For any Π0
1 class, P ⊆ 2ω, P is very small if and

only if Br(P ) is dense simple.
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Proof. It is convenient here to provide an alternative characterisation
of dense simplicity.

Lemma 3.13. A c.e. set is dense simple if and only if for all strong
arrays 〈Df(n)〉n

{n : ‖X ∩
n⋃

i=0

Df(i)‖ > n} is finite.

Proof. Suppose that for some computable function f there are in-
finitely many n such that ‖X ∩

⋃n
i=0Df(i)‖ > n. If we let m(n) =

max(
⋃n

i=0Df(i)), then for infinitely many n,

‖{x : x ∈ X and x 6 m(n)}‖ > n.

Therefore, if pX is the principal function of X, pX(n) 6 m(n) for
infinitely many n. But m is computable so X is not dense simple.

Conversely, suppose there is a computable function φ such that
pX 6 φ(n) for infinitely many n. Let

Df(n) =

{[
0, φ(0)

]
if n = 0(

φ(n− 1), φ(n)
]

otherwise

where the notation (a, b] represents the appropriate interval in ω. Then
whenever pX(n) 6 φ(n) we have ‖X ∩

⋃n
i=0Df(i)‖ > n.

Now we complete the proof of the theorem. Suppose P is not
very small and let g be computable such that for infinitely many n
‖P [g(n)]‖ > n. Let g′(n) = g(n + 1) so that for infinitely many n
‖P [g′(n)]‖ > n + 1. By Observation 2.24 it follows that for infinitely
many n ‖Br(P )[< g′(n)]‖ > n. Let

Df(n) =

{
{σ ∈ 2<ω : g′(n− 1) 6 |σ| < g′(n)} if n 6= 0
{σ ∈ 2<ω : |σ| < g′(0)} otherwise.

Then for infinitely many n

‖Br(P ) ∩
⋃n

i=0Df(i)‖ = ‖Br(P )[< g′(n)]‖
> n

and Br(P ) is not dense simple.
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Conversely, suppose 〈Df(n)〉 is such that ‖Br(P ) ∩
⋃n

i=0Df(i)‖ > n
for infinitely many n. Let m(n) = max(

⋃n
i=0Df(i)). Then for in-

finitely many n ‖Br(P )[6 m(n)]‖ > n, which implies, using Observa-
tion 2.24, that ‖P [m(n) + 1]‖ > n and so P is not very small.

Theorem 3.14. P is very small if and only if Brl(P ) is dense simple.

Proof. Similar to the proof of Theorem 2.30. If 〈Df(n)〉n is a disjoint
strong array such that for infinitely many n ‖Brl(P ) ∩

⋃n
i=0Df(i)‖ >

n, then define Dg(n) = {σ : |σ| ∈ Df(n)}. This disjoint strong array
then witnesses the fact that Br(P ) is not dense simple.

In the other direction, let 〈Df(n)〉n be a disjoint strong array wit-
nessing the fact that Br(P ) is not dense simple. As before define
Dg(n) = {|σ| : σ ∈ Df(n)}. Then let

Dh(n) =
n⋃

i=0

Dg(i) r
n−1⋃
i=0

Dg(i).

And 〈Dh(n)〉n is a disjoint strong array witnessing the fact that Brl(P )
is not dense simple.

Very smallness is a strictly stronger property than smallness as the
next theorem shows. First we will need the following lemma.

Lemma 3.15. (Lachlan [11] and Robinson [16]) There is a hypersim-
ple set that has no dense simple superset.

Robinson and Lachlan actually proved that there is an r-maximal
set with no dense-simple superset, but as all r-maximal sets are hy-
persimple (see for example [20] chapter X) the lemma follows.

Theorem 3.16. There exists a small Π0
1 subclass of 2ω with no com-

putable path that has no very small subclass.

Proof. Let X be hypersimple with no dense simple superset and let
X0∪X1 = X be any c.e. partition of X with no computable separating
set. The claim is that S = S(X0, X1) is small with no very small Π0

1

subclass.
We first observe that S is small as X is hypersimple (as in Lemma

2.6). Suppose V ⊆ S is a very small Π0
1 subclass. Then Brl(V ) is dense

simple by Theorem 3.12. But Brl(V ) ⊆ Brl(S), so Brl(V ) ⊇ Brl(S) =
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X by observation 2.29. This contradicts the assumption that X has
no dense simple superset.

The previous theorem means that small Π0
1 classes and very small

Π0
1 classes can be distinguished by their Muchnik degree — that is,

that there is a Muchnik degree that contains a small Π0
1 class but no

very small Π0
1 class.

The density of the Muchnik lattice is still an open problem al-
though some partial results have been obtained. The previous theorem
gives one such result.

Corollary 3.17. If P and V are Π0
1 subclasses of 2ω such that V is

very small, P has no small Π0
1 subclass, and P >w V , then there exists

a Π0
1 class Q ⊆ 2ω such that V <w Q <w P .

Proof. Let S be small with no very small Π0
1 subclass. Then we claim

V ∨ (P ∧ S) is the required Q. V ∧ S is small and so V ∧ S 6>w P
(using Lemma 2.15). Therefore V ∨ (P ∧ S) ≡w P ∧ (V ∨ S) <w P.
But also V 6>w P ∧S as neither P nor S has a very small Π0

1 subclass.
Therefore V ∨ (P ∧ S) >w V .

4 Small Π0
1 classes and thinness

In this sections we compare smallness with the well-established prop-
ery of thinness. But first we establish the perhaps not surprising fact
that all small classes have zero measure.

Let µ be the standard fair-coin measure on subclasses of 2ω. Ob-
serve that if P is a closed subclass of 2ω, then the function n 7→
‖P [n]‖/2n is decreasing and µ(P ) = limn→∞ ‖P [n]‖/2n.

Theorem 4.1. If P ⊆ 2ω is closed, and µ(P ) > 0, then P is not
small.

Proof. Choose some computable r ∈ R such that 0 < r 6 µ(P ). Then
for all n ‖P [n]‖ > r · 2n, and if g(n) = the least k such that k >
log2(n/r), then ‖P [g(n)]‖ > n.

A Π0
1 class P is thin if every Π0

1 subclass of P is the intersection of
P with some clopen set. Equivalently, P is thin if and only if its lattice
(under ∩,∪) of Π0

1 subclasses forms a Boolean algebra. The notion
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has been studied by Cholak, Coles, Downey, Jockusch, Hermann, Stob
and others in [6], [8], [9] and elsewhere. As both small and thin classes
are “diminutive” in some sense it is natural to ask at this stage how
the notions of thinness and smallness relate to each other.

Theorem 4.2. There exists a very small (and hence small) Π0
1 class

that is not thin.

Proof. If V is any very small Π0
1 class, then by Lemma 3.4 so is V ∨V .

However V ∨ V is never thin as {f ⊕ f : f ∈ V } is a Π0
1 subclass of

V ∨ V that is not the intersection of V ∨ V with any clopen set (it is
easy to see its complement in V ∨ V is not closed).

Theorem 4.3. There is a thin Π0
1 class that is not very small

Proof. We first show that for any perfect Π0
1 class P ⊆ 2ω, Ext(P ) ≡T

Br(P ). One direction is clear because σ ∈ Br(P ) ⇔ σa〈0〉, σa〈1〉 ∈
Ext(P ). So Br(P ) 6T Ext(P ). For the other direction, σ ∈ Ext(P ) ⇔
∃τ ∈ Br(P ) τ ⊇ σ. So Ext(P ) is c.e. in Br(P ). But Ext(P ) is a co
c.e. set so it is in fact computable in Br(P ). That is, Ext(P ) 6T Br(P ).

The rest of the proof follows from results in [8] about the Turing
degree of the extendible nodes of thin Π0

1 classes. In [8], Downey,
Jockusch and Stob introduce a class of c.e. degrees called the anr de-
grees (later called anc degrees). They prove that there are thin sep-
arating classes whose extendible nodes are of anc degree (viz. the Π0

1

sets associated with Martin Pour-El theories), and indeed that every
anc degree contains Ext(T ) for some thin separating Π0

1 class,T . They
also show in [8] that there are low anc degrees.

Let T be a thin separating Π0
1 class such that Ext(T ) is of low

degree. Suppose T is very small. Then Br(T ) would be dense simple,
and therefore of high degree (see [12] or Theorem XI.1.3 [20]). As
Br(T ) ≡T Br(T ) ≡T Ext(T ), this is a contradiction.

Theorem 4.4. There exists a thin, very small Π0
1 class

Proof. This is just a matter of combining the requirements from the-
orem 3.5 with the requirements for thinness (see for example [6]).

It is unknown as yet if every thin Π0
1 class is small although we

conjecture the answer is no. In a future paper this question and similar
ones will be investigated.
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