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Abstract

We investigate a directed metric on the space of infinite binary sequences defined
by

d(Y → X) = lim sup
n

C(X �n | Y �n)

n
,

where C(X � n | Y � n) is the Kolmogorov complexity of X � n given Y � n. In
particular we focus on the topological aspects of the associated metric space -
proving that it is complete though very far from being compact.

This is a continuation of earlier work by the author investigating other geomet-
rical and toplogical aspects of this metric.
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1 Introduction

The results in this paper fit into the general framework of the study of degree structures
in information and computability theory. This area of research involves in large part the
comparison of infinite binary sequences (or sets of infinite binary sequences) in terms of
their information content. There are various ways of conceiving of information content
- computational strength and descriptive complexity being two - and often a general
structure is defined on the class of all binary sequences once a particular method of
comparison is determined to be of interest. Usually the method of comparison consists
of a pre-order relation defined on this class (or the class of sets of binary sequences)
as in the case of Turing reducibility, many-one reducibility (or Muchnik and Medvedev
reducibility), and the resulting structure is a partial order defined on the set of equivalence
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classes induced by the pre-order (Turing degrees, many-one degrees, Muchnik degrees and
so on).

Often these structures will have natural operations defined on them. For example the
Turing degrees have the jump unary operator and a least upper bound binary operator
- the latter turning the structure into an upper semi-lattice. The Muchnik degrees have
both a least upper bound and a greatest lower bound under which the partial order
becomes a distributive lattice. To a large extent these operations focus the research
into the structures and help to develop an understanding of the underlying reducibility
concepts.

In this paper we look at a different notion of comparison between infinite binary se-
quences (usually called reals). This comparison tries to capture an intuitive notion of
information density rather than computational strength. The resulting degree structure
exhibits a significantly more algebraic and geometrical nature than the Turing degrees.
Indeed the resulting structure is a metric space and a natural scalar multiplication func-
tion can be defined that allows geometric notions such as angle and projection to be
expressed. The fundamental metric definition is based on the Kolmogorov complexity
of finite strings. If σ is a finite binary string, then C(σ) denotes the plain1 Kolmogorov
complexity of σ. If A and B are infinite binary sequences, then the distance from A
towards B is defined to be

d(A→ B) = lim sup
n

C(B �n |A�n)

n
.

We justify referring to this function as a distance by noting that it obeys the triangle
inequality in the direction of the arrow (see [1]) and that for all A, d(A → A) = 0. We
will refer to the function d(· → ·) as a directed metric. It fails the stricter definition of a
metric because it is not symmetric and distinct sequences may be distance zero from one
another. We can however remedy these problems rather easily by defining the distance
between A and B to be

d(A,B) = max{d(A→ B), d(B → A)},

and by identifying reals that are distance zero from one another (writing A 'd B if
d(A,B) = 0). d(·, ·) is then a metric on these 'd-equivalence classes.

In our context these 'd-equivalence classes play the role of the Turing degrees in pure
computability theory. Indeed from this directed metric one can also describe a natural
partial order on the structure. Namely

A >d B if and only if d(A→ B) = 0.

However there is more information to be obtained in our structure as, if A >d B, we can
also quantify the extent to which A is above B - namely d(B → A). Only minimal work
has been done investigating the properties of this partial order.

1Although for most of the paper it is irrelevant whether we use plain complexity C(σ) or prefix-free
complexity K(σ).
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The definition of this directed metric is a natural relativisation of the definition2 of
the effective packing dimension of a real A:

dimpA = lim sup
n

C(A�n)

n
.

There is of course another natural relativisation of packing dimension:

lim sup
n

CY (X �n)

n

- one that has been studied in [?] - and we mention here a few of the relevant differences.
This second notion of relativistion leads to a very different structure to the one studied
here. One difference that makes this so is the fact that if Z 'T Y , then

lim sup
n

CY (X �n)

n
= lim sup

n

CZ(X �n)

n
.

Thus if the information in Y is diluted (see definition ...) the relativised dimension
remains the same. This not the case in the text definition as if Z represents a diluted
form of Y , then in general

d(Z → X) 6= d(Y → X).

Furthermore, with the text definition we have a notion of projection from one real
onto another. - defining the projection of X onto Y to be α ∈ [0, 1] if the distance from
X to a dilution of factor α of Y is 0, and if this is the case for no lesser dilution.

Indeed, if 0 denotes the infinite sequence of 0s (or in fact any computable sequence),
then

dimpA = d(0→ A).

The dual notion - the effective Hausdorff dimension - is also of interest and has been
studied even more extensively than packing dimension in the literature (see [9] for an
introduction). The effective Hausdorff dimension of a real A can be defined as

dimH A = lim inf
n

C(A�n)

n

(but also see footnote 2). Some results in the area are restricted to the so-called regular
reals. These are reals whose effective Hausdorff and packing dimensions are equal. That
is, reals A for which the effective dimension

dimA = lim
n

C(A�n)

n
2 This definition of effective packing dimension differs from the usual one in the literature - which

is more clearly an effectivisation of the classical definition. The equivalence of the text definition is a
fundamental result in the area first proved by Lutz [5] continuing work by Mayordomo [6]. See also [7]
for the development of the subject.
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exists.

Along with the metric structure we also have a basic algebraic operation - a dilution.
If A is a real and α ∈ [0, 1], then αA is the infinite binary sequence that is formed by
interspersing padding 0s into the bits of A. α represents the proportion of bits of A to the
bits of αA. A precise definition is given in Section 3. We refer to the operation α 7→ αA
as a scalar multiplication and it is associative - that is α(βA) 'd (αβ)A. This operation
dilutes the information in A in the sense that dimp(αA) = α dimp(A). What is true more
generally however is that

d(αX → αY ) = αd(X → Y ).

The dilution operation allows us to define geometric notions such as angles and pro-
jections in the metric space similar to the way that a scalar operation and a norm can
define a geometry in Rn - see [1]. It also allows us to ask questions about compressibility
of information. In [2] it is shown that every regular real can be maximally compressed.
That is, for every regular real X of effective dimension α, there is a real Y of effective
dimension 1 such that X 'd αY . The assumption of regularity here is necessary, as
any real with Hausdorff dimension 1 is regular and any dilution of a regular real is also
regular.

In [2] it was also shown that the metric space is path-connected. That is any real can
be continuously deformed along a path into any other real. Or more precisely, given any
two reals A and B there is a continuous map π from [0, 1] into the metric space such that
π(0) = A and π(1) = B.

In this paper we continue to concentrate on the topological aspects of the structure.
The main results are that the metric space is complete - every Cauchy sequence of reals
converges - and that the metric space is far from being compact. In fact no neighbourhood
(set with nonempty interior) is compact.

1.1 Notation

Most notation is standard. The set of all countable binary sequences (reals) is denoted
2N, and the set of all finite binary strings is denoted 2<N. Reals are usually represented
by uppercase roman letters and strings by lower case Greek letters. If σ and τ are strings,
then στ represents the concatenation of σ and τ . Where more clarity is needed we write
σaτ . σ0 is short for σa〈0〉. If the string σ extends the string τ we write σ ⊇ τ . And if
A ∈ 2N extends σ we write A ⊃ σ. A string consisting of n 0s is denoted 0n. If A ∈ 2N,
then

A = A(0)A(1)A(2) . . . ,

A�n = A(0)A(1)A(2) . . . A(n− 1),

and
A[m,n] = A(m)A(m+ 1)A(m+ 2) . . . A(n− 1).
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We will follow [3] and [8] in the notation with respect to Kolmogorov complexity. C(σ)
is the plain Kolmogorov complexity of the string σ and K(σ) is its prefix-free complexity.
Other notation will be defined in the relevant section.

2 Completeness

Let 〈Xi〉∞i=0 be a Cauchy sequence of reals. We will construct a real X such that

∀ε > 0∃N∀n > Nd(Xn, X) < ε.

We do this by constructing a strictly increasing sequence of positive natural numbers
〈mn〉 and defining the real X to be

X0[0,m0]
aX1[m0,m1]

a . . .aXn[mn−1,mn]a . . .

We describe mn by recursion, letting

1. m0 = 1

2. mn+1 = the least k > (n+ 1)
∑n

i=0mi such that for all j 6 n+ 2 and l > k

C(Xn+2 � l |Xj � l)

l
< d(Xj → Xn+2) + 2−n. (1)

Such a k exists as

lim sup
s

C(Xn+2 �s |Xj �s)

s
= d(Xj → Xn+2).

For any integer N > 0 we will bound d(XN → X) in terms of N . As 〈Xi〉 is a Cauchy
sequence, there is a function d : N → R+ such that limN d(N) = 0 and such that for all
N and all m,n > N d(Xn → Xm) < d(N). We will write dN for d(N).

Fix N ∈ N. We will first find an upper bound on d(XN → X) that vanishes as
N →∞, and then do the same for d(X → XN). We calculate

lim sup
s→∞

C(X �s |XN �s)

s
.

For large enough s (namely s > mN), X �s can be written,

X �mN
aXN+1[mN ,mN+1]

aXN+2[mN+1,mN+2]
a . . .aXN+k[mN+k−1,mN+k]aτ

for some unique largest k > 0 and τ ( XN+k+1[mN+k,mN+k+1]. To describe X � s
given XN � s, we first describe X � mN (using mN bits); then we describe τ and
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XN+i[mN+i−1,mN+i] for each positive i 6 k by describing all the values mN+i for
1 6 i 6 k (using in the order of

∑k
i=1 logmN+i bits) along with XN+k+1 � s and

XN+i �mN+i for each 1 6 i 6 k. For these last strings we use XN �s and XN �mN+i for
each 1 6 i 6 k respectively, and then leverage the fact that d(XN → XN+j) < dN for all
j > 0. A multiplicative factor of 2 will be used to distinguish the various descriptions,
and an additive constant independent of N and k is appended. Thus

C(X �s |XN �s) 6 2
[
mN +

k∑
i=1

logmN+i +
k∑

i=1

C(XN+i �mN+i |XN �mN+i)

+ C(XN+k+1 �s |XN �s)
]

+O(1)

6 2
[
logmN+k +

k−1∑
i=0

mN+i +
k∑

i=1

C(XN+i �mN+i |XN �mN+i)

+ C(XN+k+1 �s |XN �s)
]

+O(1)

6 2
[
logmN+k +

N+k−1∑
i=0

mi +
k∑

i=1

C(XN+i �mN+i |XN �mN+i)

+ C(XN+k+1 �s |XN �s)
]

+O(1)

Now using the fact that d(XN → XN+j) 6 dN for all j > 0 and the definition of mn+1,
we have

C(XN+i �mN+i |XN �mN+i) < mN+i(dN + 2−N)

(in (1) above taking n = N + i − 2, l = mN+i > mN+i−1 = mn+1, and j = N 6 n + 2)
and

C(XN+k+1 �s |XN �s) < s(dN + 2−N),

(taking n = N + k − 1 in (1) etc.). Also by the definition of mn+1,
∑N+k−1

i=0 mi <
mN+k

N+k
.

Therefore

C(X �s |XN �s) 6 2
[
logmN+k +

mN+k

N + k
+ (dN + 2−N)(s+

k∑
i=1

mN+i)
]

+O(1)

6 2
[
logmN+k +

mN+k

N + k
+ (dN + 2−N)(s+

N+k∑
i=0

mi)
]

+O(1)

6 2
[
logmN+k +

mN+k

N + k
+ (dN + 2−N)(s+mN+k)

+ (dN + 2−N)
N+k−1∑
i=0

mi

]
+O(1)

6 2
[
logmN+k +

mN+k

N + k
+ 2s(dN + 2−N) + (dN + 2−N)

mN+k

N + k

]
+O(1).
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Now dividing by s and using the fact that s > mN+k:

C(X �s |XN �s)

s
6 2
[ logmN+k

s
+

mN+k

s(N + k)
+ 2(dN + 2−N)

+ (dN + 2−N)
mN+k

s(N + k)

]
+
O(1)

s

6 2
[ logmN+k

mN+k

+
1

N + k
+ 2(dN + 2−N) +

dN + 2−N

N + k

]
+
O(1)

s
.

As s goes to infinity, so does k, so

d(XN → X) = lim sup
s

C(X �s |XN �s)

s

6 lim sup
s

2
[ logmN+k

mN+k

+
1

N + k
+ 2(dN + 2−N) +

dN + 2−N

N + k

]
+
O(1)

s

= 4(dN + 2−N)

And thus d(XN → X)→ 0 as N →∞.

To work out d(X → XN), we first calculate C(XN � s |X � s). We claim that this is
at most

2
[

logmN+k + C(XN+k+1 �mN+k |X �mN+k)
]

+ C(XN �s |XN+k+1 �s) +O(1).

To see this note that to describe XN � s given X � s, we first take a description of mN+k

(logmN+k bits), then use mN+k and X �s to get a description of X �mN+k and τ . Using
these and a description of XN+k+1 �mN+k given X �mN+k, we can describe XN+k+1 �s by
prepending XN+k+1 �mN+k to τ . Finally, using a description of XN �s given XN+k+1 �s,
we describe XN � s. We distinguish the three descriptions from each other by doubling
the lengths of two of them in the standard way.

Dividing by s and taking the limit supremum gives that d(X → XN) is at most

lim sup
s

2
[

logmN+k + C(XN+k+1 �mN+k |X �mN+k)
]

+ C(XN �s |XN+k+1 �s)

s

But the logmN+k

s
term will vanish as s→∞ (as s > mN+k), and

lim sup
s

C(XN �s |XN+k+1 �s)

s
= d(XN+k+1 → XN) 6 dN .
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So d(X → XN) is at most

lim sup
s

2C(XN+k+1 �mN+k |X �mN+k)

s
+ dN . (2)

We will establish the result by finding a bound on C(XN+k+1 �mN+k |X �mN+k) with
the next lemma.

Lemma 2.1. C(XN+k+1 �mN+k |X �mN+k) is at most

2
k−1∑
i=0

logmN+i + 2(dN + 2−N)
k∑

i=0

mN+i +O(k).

Proof. We prove this by induction. Let the constants A and B be such that for a given
k

C(XN+k+1 �mN+k |X �mN+k) 6 2
k−1∑
i=0

logmN+i + 2(dN + 2−N)
k∑

i=0

mN+i + Ak +B.

A and B can be chosen so that the inequality also holds for the base case when k = 1.
We now establish the inequality for k + 1.

To describe XN+k+2 �mN+k+1 given X �mN+k+1, we first describe mN+k (logmN+k

bits) and use this to partition X �mN+k+1 to get X �mN+k and X[mN+k,mN+k+1]. We
then take a description of XN+k+1 �mN+k given X �mN+k (the length of which will be
bounded by the induction hypothesis) to get XN+k+1 � mN+k. Now, by the definition
of X, X[mN+k,mN+k+1] = XN+k+1[mN+k,mN+k+1] so we can prepend XN+k+1 �mN+k

to X[mN+k,mN+k+1] to get XN+k+1 � mN+k+1. Finally we can take a description of
XN+k+2 �mN+k+1 given XN+k+1 �mN+k+1 (which will be short as d(XN+k+1 → XN+k+2)
is small) to furnish a description of XN+k+2 � mN+k+1. Doubling the length of two
of the descriptions and adding a constant C independent of k, A and B gives that
C(XN+k+2 �mN+k+1 |X �mN+k+1) is bounded above by

2
[
logmN+k + C(XN+k+2 �mN+k+1 |XN+k+1 �mN+k+1)

]
+ C(XN+k+1 �mN+k |X �mN+k) + C.

This in turn is less than or equal to

2
[
logmN+k + (dN + 2−N)mN+k+1

]
+ C(XN+k+1 �mN+k |X �mN+k) + C.

8



By the induction hypothesis, this gives:

C(XN+k+2 �mN+k+1 |X �mN+k+1)

6 2
[
logmN+k + (dN + 2−N)mN+k+1

]
+ 2

k−1∑
i=0

logmN+i

+ 2(dN + 2−N)
k∑

i=0

mN+i + Ak +B + C

6 2
k∑

i=0

logmN+i + 2(dN + 2−N)
k+1∑
i=0

mN+i + Ak +B + C.

As C is independent of A, we can choose A > C, thus

C(XN+k+2 �mN+k+1 |X �mN+k+1) 6 2
k∑

i=0

logmN+i+2(dN+2−N)
k+1∑
i=0

mN+i+A(k+1)+B,

as required.

Finally using the lemma, the fact that k → ∞ as s → ∞, and the fact that s >
mN+k > mk > O(k2), gives:

d(X → XN)

6 lim sup
s

2C(XN+k+1 �mN+k |X �mN+k)

s
+ dN from (2)

6 lim sup
s

4
∑k−1

i=0 logmN+i + 4(dN + 2−N)
∑k

i=0mN+i +O(k)

s
+ dN

6 lim sup
s

4
∑N+k−1

i=0 mi + 4(dN + 2−N)
∑N+k

i=0 mi

s
+ dN

6 lim sup
s

4mN+k/(N + k) + 4(dN + 2−N)
∑N+k−1

i=0 mi + 4(dN + 2−N)mN+k

s
+ dN

6 lim sup
s

4mN+k/(N + k) + 4(dN + 2−N)mN+k/(N + k) + 4(dN + 2−N)mN+k

s
+ dN

6 lim sup
s

4

N + k
+

4(dN + 2−N)

N + k
+ 4(dN + 2−N) + dN

6 4(dN + 2−N) + dN .

And this approaches 0 as N →∞ as required.
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3 Compactness

We now prove some results related to compactness under the d-metric. For a metric
space, compactness and sequential compactness are equivalent. That is, a metric space is
compact if and only if every sequence of points in the space has a convergent subsequence.
It will be convenient for us to work with sequential compactness here.

Although it is generally a relatively simple thing in an unbounded metric space to
create a sequence with no convergent subsequence, the metric space under consideration
is not unbounded - for every X, Y ∈ 2N, d(X, Y ) 6 1. Furthermore, an unbounded
metric space may still have compact neighbourhoods. For example in Rn every point is
contained in a compact neighbourhood, that is it is locally compact. For a metric space
local compactness is equivalent to every point’s being contained in the interior of some
compact (and hence closed) ball.

The space 2N under the d-metric is very far from being compact or indeed locally
compact. We show in fact that no closed ball is compact and hence that 2N contains
no compact neighbourhoods. This is essentially due to the existence of an infinite set of
pairwise relatively random reals.

We will need in the proof two constructions that were introduced in [1]. The first is
the dilution of a real. This takes a real X and intersperses padding bits (0s) into it in
order to decrease its dimension (Hausdorff and packing) by a given factor.

As standard, if x ∈ R, then [x] is the least nearest integer to x.

Definition 3.1. If X ∈ 2N and α ∈ [0, 1], then we define αX, the dilution of X by factor
α, as follows:

αX = σ10
i1σ20

i2σ30
i3 . . . σn0in . . .

where

1. σi ∈ 2<N for all i ∈ N+

2. X = σ1σ2σ3 . . .

3. |σn0in| = n

4. |σn| = [αn].

The second construction differs from the first only by using the bits of a second real
Y instead of 0s.

Definition 3.2. If X, Y ∈ 2N and α ∈ [0, 1], then we define α[XY ] as follows:

α[XY ] = σ1τ1σ2τ2σ3τ3 . . . σnτn . . .

where
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1. σi, τi ∈ 2<N for all i ∈ N

2. X = σ1σ2σ3 . . .

3. Y = τ1τ2τ3 . . .

4. |σnτn| = n

5. |σn| = [αn].

Lemma 3.3. For all Y,W ∈ 2N,

lim sup
n

CW (αY �n)

n
= α lim sup

n

CW (Y �n)

n
.

Proof. The proof is a relativisation of Lemma 3.4 in [2].

Lemma 3.4. If Y, Z ∈ 2N, then

C(α[Y Z]�n) = C(αY �n, (1− α)Z �n)±O(
√
n log n).

Proof. Let m be the greatest integer such that m(m+ 1)/2 6 n and let

α[Y Z]�n = γ1γ2γ3 . . . γmµ,

where γi = σiτi as in the definition of α[Y Z]. Then |µ| < m+1 and n = m(m+1)/2+|µ|.
To describe α[Y Z] �n, it is enough to describe a certain number of bits of Y , a certain
number of bits of Z, the numbers |σi| for positive i 6 m, and the string µ. To describe
the numbers |σi| it is sufficient to use O(m logm) bits, as there are m numbers and each
has value at most m. The length of the string µ is at most m + 1 so requires at most
O(m) bits for its description.

The bits of Y required for α[Y Z] are exactly the bits in αY �n. The number of bits
of Z in α[Y Z]�n may differ slightly from the number of bits of Z in (1−α)Z �n, but we
bound this difference now. Let k be the number of bits of Z in α[Y Z] �n and l be the
number of bits of Z in (1− α)Z �n. Then

m∑
i=1

i− [αi] 6 k 6 |µ|+
m∑
i=1

i− [αi].

But αi− 1/2 6 [αi] 6 αi+ 1/2 and |µ| < m+ 1 so

(1− α)m(m+ 1)/2−m/2 6 k 6 (1− α)m(m+ 1)/2 +m/2 +m+ 1.

And by similar reasoning

(1− α)m(m+ 1)/2−m/2 6 l 6 (1− α)m(m+ 1)/2 +m/2 +m+ 1.
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Thus both k − l and l − k are O(m). Therefore

C(α[Y Z]�n) 6 C(αY �n, (1− α)Z �n) +O(m logm).

As m = O(
√
n), the result follows.

The other direction is very similar. Given a description for α[Y Z], one only needs
to know the values of all the |σi| and any excess bits of Z (at most O(m) as above) to
describe αY �n and (1− α)Z �n. Thus

C(αY �n, (1− α)Z �n) 6 C(α[Y Z]) +O(
√
n log n).

This next Lemma is standard and will be used extensively.

Lemma 3.5 (Symmetry of Information - Kolmogorov, Levin).

C(σ, τ) = C(σ) + C(τ |σ)±O logC(σ, τ).

Consequently if |σ| = |τ | = n, then

C(σ, τ) = C(σ) + C(τ |σ)±O log n.

Proof. See [3], or [4] for standard proofs and exposition.

We will have use for the following relatively simple extension.

Lemma 3.6.
C(σ, τ |µ) = C(σ|µ) + C(τ |σ, µ)±O logC(σ, τ |µ),

and if |σ| = |τ | = n, then

C(σ, τ |µ) = C(σ|µ) + C(τ |σ, µ)±O log n.

Proof. This is a mechanical adaptation of the proof of Lemma 3.5.

Lemma 3.7. For all W ∈ 2N and σ ∈ 2<N,

CW (σ) 6 KW (σ) +O(1) 6 CW (σ) + 2 log(|σ|) +O(1).

Proof. This is straightforward relativisation of a standard result. For a proof see for
example [8] Corollary 2.4.2.

Lemma 3.8. If Y ∈ 2N and α ∈ [0, 1], then

C(Y �n, αY �n) = C(Y �n) +O(
√
n log n).
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Proof. To describe αY � n given a description of Y � n, it is sufficient to be given a
description of all the |σi| from the definition of αY . This requires O(

√
n log n) bits as in

the proof of Lemma 3.4. Thus

C(Y �n, αY �n) = C(αY �n | Y �n) + C(Y �n)±O logC(Y �n, αY �n)

= O(
√
n log n) + C(Y �n)±O(log n)

= C(Y �n) +O(
√
n log n).

Lemma 3.9. If Y,W ∈ 2N, Y is random relative to W , and α ∈ [0, 1], then

lim sup
n

CW (αY �n)

n
= α lim sup

n

C(Y �n)

n
.

Proof. Using Lemma 3.3 above,

lim sup
n

CW (αY � n)

n
= α lim sup

n

CW (Y � n)

n
6 α lim sup

n

C(Y � n)

n
,

and for the other direction:

lim sup
n

CW (αY �n)

n
= α lim sup

n

CW (Y �n)

n
Lemma 3.3

> α lim sup
n

KW (Y �n)− 2 log n

n
Lemma 3.7

= α lim sup
n

KW (Y �n)

n

= α lim sup
n

K(Y �n)

n
Y random relative to W

> α lim sup
n

C(Y �n)

n
Lemma 3.7

The next lemma also uses relative randomness. It lacks a generality that was proved
in [1]. What is more generally true is that the result holds for Y, Z ∈ 2N if ∠Y Z = 1 (see
[1] for the definition).

Lemma 3.10. If Y, Z ∈ 2N, Z random relative to Y , and α, β ∈ [0, 1], then

lim sup
n

C(αY �n, βZ �n)

n
= lim sup

n

αC(Y �n) + βC(Z �n)

n

13



Proof. For one direction note that

C(αY �n, βZ �n) 6 C(αY �n) + C(βZ �n) +O(logC(βZ �n))

6 C(αY �n) + C(βZ �n) +O(log n).

For the other:

lim sup
n

C(αY �n, βZ �n)

n

> lim sup
n

C(αY �n) + C(βZ �n | αY �n)−O(log n)

n

using O(
√
n log n) bits to change from Y �n to αY �n

> lim sup
n

αC(Y �n) + C(βZ �n | Y �n)−O(
√
n log n)

n

> lim sup
n

αC(Y �n) + CY (βZ �n)−O(
√
n log n)

n

> lim sup
n

αC(Y �n) + βC(Z �n)

n
Lemma 3.9.

Theorem 3.11. For every closed ball B̄ in the metric space 〈2N, d〉, there is a sequence
of reals in B̄ with no Cauchy subsequence. Hence there are no compact neighbourhoods
in 2N under the d-metric.

Proof. Let B̄ = B(X, ε) be a closed ball. First we define a sequence 〈Xi〉 so that X0 = X
and Xi+1 is chosen to be random relative to ⊕i

k=0Xk. Now define Yi = ε[XiX] for each
i > 0. The claim is that for all distinct positive i and j, Yi ∈ B̄ and d(Yi → Yj) > ε, and
thus 〈Yi〉∞i=1 can have no Cauchy (and hence no convergent) subsequence. For the first
part:

14



d(X → Yi)

= lim sup
n

C(Yi �n |X �n)

n

= lim sup
n

C(Yi �n,X �n)− C(X �n)±O(log n)

n
Lemma 3.5

= lim sup
n

C(εXi �n, (1− ε)X �n,X �n)− C(X �n)±O(
√
n log n)

n
Lemma 3.4

= lim sup
n

C(εXi �n,X �n)− C(X �n)±O(
√
n log n)

n
Lemma 3.8

= lim sup
n

C(εXi �n |X �n)±O(
√
n log n)

n
Lemma 3.5

6 ε lim sup
n

C(Xi �n)

n
Lemma 3.3

= ε dimp(Xi)

= ε
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d(Yi → X)

= lim sup
n

C(X �n | Yi �n)

n

= lim sup
n

C(X �n, Yi �n)− C(Yi �n)±O(
√
n log n)

n

= lim sup
n

C(X �n, εXi �n, (1− ε)X �n)− C(εXi �n, (1− ε)X �n)±O(
√
n log n)

n

using Lemma 3.4

= lim sup
n

C(X �n, εXi �n)− C(εXi �n, (1− ε)X �n)±O(
√
n log n)

n

using Lemma 3.8

= lim sup
n

C(X �n) + εC(Xi �n)− εC(Xi �n)− (1− ε)C(X �n)±O(
√
n log n)

n

Lemma 3.10

= lim sup
n

εC(X �n)±O(
√
n log n)

n

= ε dimpX

6 ε

Thus d(Yi, X) 6 ε and Yi ∈ B̄ for all i.
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For the second part, suppose i < j:

d(Yi → Yj)

= lim sup
n

C(Yj �n | Yi �n)

n

= lim sup
n

C(Yj �n, Yi �n)− C(Yi �n)±O(log n)

n
Lemma 3.5

= lim sup
n

C(εXj �n, εXi �n, (1− ε)X �n)− C(εXi �n, (1− ε)X �n)±O(
√
n log n)

n

Lemmas 3.4, 3.8

= lim sup
n

C(εXj �n, εXi �n | (1− ε)X �n) + C((1− ε)X �n)− C(εXi �n, (1− ε)X �n)

n

Lemma 3.5 and henceforth suppressing the O(
√
n log n) term

= lim sup
n

C(εXj �n, εXi �n | (1− ε)X �n)− C(εXi �n | (1− ε)X �n)

n

Lemma 3.5

= lim sup
n

C(εXj �n | εXi �n, (1− ε)X �n)

n
Lemma 3.6

> lim sup
n

C⊕
j−1
k=0Xk(εXj �n)

n

=ε lim sup
n

C(Xj �n)

n
Lemma 3.9

=ε as Xj is random

Thus d(Yi, Yj) > ε for all i 6= j and the sequence 〈Yk〉 has no Cauchy subsequence.
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