- 1. Let $f(x) = \ln(1+x)$, $x_0 = 1$ and $x_1 = 1.1$. Use linear interpolation to calculate an approximation value for f(1.04), and obtain a bound on the truncation error.
- 2. Use the Newton-divided difference polynomial to approximate f(3) from the following table:

x	0	1	2	4	5	6	
f(x)	1	14	15	5	6	19	·

3. The following is the tabulation of an actual thermodynamic quantity:

				0.8						
f(x)	1.000	0.916	0.836	0.0741	0.624	0.429	0.224	0.265	0.291	0.316

Approximate f(0.23) using the Lagrange interpolating polynomial.

4. Given the following tabulated function

x	0	1	2	3	4	5	
f(x)	-7	-4	5	26	65	128	

This tabulated function is a polynomial. Find the degree of the polynomial and the coefficient of the highest power of x.

5. Use Lagrange interpolation, find f(4.4) for the following function:

x	0	1.0	2.0	3.8	5.0	
f(x)	0	0.569	0.792	0.223	-0.186	

6. The following table gives the sine for angles at an interval of 2° :

$\sin \theta$	0.000	0.035	0.068	0.105	0.140	0.174	0.208	0.242	0.276
Angle θ^o	0	2	4	6	8	10	12	14	16

- (a) Using the Newton-divided difference polynomial to estimate sine of 9° . Compare with the exact value $\sin(9^{\circ}) = 0.1564344651$.
- (b) Derive an interpolating polynomial using an increment of 4° and estimate the sine of 9°. Compare the error with the error for part (a).
- 7. Determine an appropriate step size to use, in the construction of a table of $f(x) = (1+x)^6$ on [0, 1]. The truncation error for linear interpolation is to be bounded by 5×10^{-5} .
- 8. Determine the maximum step size that can be used in the interpolation of $f(x) = e^x$ in [0, 1], so that the error in the linear interpolation will be less than 5×10^{-4} . Find also the step size if quadratic interpolation is used.
- 9. Find the unique polynomial p(x) of degree 2 or less such that p(1) = 1, p(3) = 27, p(4) = 64 using each of the following methods.
 - (a) The Lagrange interpolating polynomial.

- (b) The Newton-divided difference polynomial.
- 10. Suppose that $f(x) = e^x \cos x$ is to be approximated on [0, 1] by an interpolating polynomial on n + 1 equally spaced points $0 = x_0 < x_1 < ... < x_n = 1$. Determine n so that the truncation error will be less than 0.0001 in this interval.
- 11. Given the function $f(x) = 1/(1+x^2)$
 - (a) Find the Lagrange polynomial p(x) that interpolates f at the points x = 0, 1, 3, 5.
 - (b) Compute p(4) and compare the result with f(4).
 - (c) Find the fourth derivative of f.
 - (d) Evaluate the error f(4) p(4).
 - (e) Find the polynomial q such that f(0) = q(0), f'(0) = q'(0), f(1) = q(1) and f'(1) = q'(1).
 - (f) Compare f(4) and q(4).
- 12. Show that if g interpolates f at the points $x_1, x_2, ..., x_{n-1}$ and h at the points $x_2, ..., x_n$, then

$$k(x) = g(x) + \frac{x_1 - x}{x_n - x_1} [g(x) - h(x)]$$

interpolates f at the points $x_1, x_2, ..., x_n$.

13. (Continuation) Show that if f is continuously differentiable in $[x_1, x_2]$ then

there exists $c \in (x_1, x_2)$ such that $f[x_1, x_2] = f'(c)$

Computer assignment

- 1. Use the MATLAB function newtondd.m to find the polynomial that interpolates the function e^x at 11 equally spaced points in the interval [0, 1]. Compare the values of polynomial to e^x at the midpoints.
- 2. Use the MATLAB function lagrange.m to find the value of interpolating polynomial at x = 1.6 that assumes these values:

x	-2	-1	0	1	2	3	
y	2.5	10	5	1	1	0	

- 3. Use the MATLAB function newtondd.m to find the polynomial that interpolates the function $\tan x$ at 21 equally spaced points in the interval $[0, \pi/4]$.
- 4. Use the MATLAB function lagrange.m to find the value of interpolating polynomial at x = 0.9 in Exercise 3.