
 
 
9.3 THEOREM. Chain Rule. If r is a differentiable vector function and s = u(t) 

is a differentiable scalar function then the derivative of r(s) with respect to t is 
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9.4 THEOREM. Rules of Differentiation. Let r1 and r2 be differentiable vector 

functions and u(t)  a differentiable scalar function . Then 
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Integrals of Vector Functions. If f, g and h are integrable then the indefinite and 
definite integrals of a vector function  r(t) = f(t)i + g(t)j + h(t)k  are defined, 
respectively, by  
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The indefinite integral of  r(t) is another vector function R(t) + c  such that R(t) 
= r(t). 
 
Length of a Space Curve. If function r(t) = f(t)i + g(t)j + h(t)k  is a smooth 
function then it can be shown that the length of the smooth curve traced by r(t)  
is given by 
 [ ] [ ] [ ] .)(')(')(')(' 222 dttrdtthtgtfs

b

a

b

a ∫∫ =++=  
 
 
Example 8*(p.456) Integral of a Vector Function 
 
If r(t) = t i + 3t2 j + 4t3 k then 
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Example 9*(pp.456-7) Length of a Space Curve  
Find the length of the curve traced by r(t) = t i + tcos t j + tsin t k ( π≤≤ t0 ). 
Solution.  
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9.5 Directional Derivative 
 
The Gradient of a Function. The vector differential operator called del- or 
nabla- operator is given by 
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When the del-operator is applied to a differentiable function ),( yxfz = or 
),,( zyxFw = , we say that the vectors 
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are the gradients of f and F, respectively. f∇  is usually read: grad f. 
 
Example 1* (p.474) Gradient 
 
 



9.5 DEFINITION  Directional Derivative 
 The directional derivative of ),( yxfz = in the direction of a unit 
vector jiu θθθ sincos)( +=  is 
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provided the limit exists. 
 
9.6 THEOREM. Computing a Directional Derivative. If ),( yxfz = is a 
differentiable function of  x and y and ,sincos jiu θθ +=  then 
 uyxfyxfDu •∇= ),(),(        (5) 
 
 



Maximum Value of the Directional Derivative  Let f represent a function of 
either two or three variables. Since (5) and its three-variable analogue express 
the directional derivative as a dot product, we see from Definition 7.3 (MATH 
201) that  
 ),1||(||,cos||||cos|||||||| =∇=∇= ufuffDu φφ  
where φ  is the angle between f∇  and  u. Because πφ ≤≤0 we have 

1cos1 ≤≤− φ  and, consequently, .|||||||| ffDf u ∇≤≤∇−  In other words: 
 

The maximum value of the directional derivative is |||| f∇ and it occurs 
when u  has the same direction as )1cos( =∇ φwhenf , 

and: 
 

The minimum value of the directional derivative is |||| f∇− and it occurs 
when u  and f∇ have opposite directions )1cos( −=φwhen . 
 
 



9.7 Divergence and Curl 
 
Vector Fields  Vector functions of two and three variables, 
 
 F(x, y) = P(x, y) i + Q(x, y) j 
 F(x, y, z)) = P(x, y, z) i + Q(x, y, z) j + R(x, y, z) k 
are also called vector fields. 
 
 
 



9.7 DEFINITION  Curl 
 The Curl of a vector field F = P i + Q j + R k is the vector field  
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9.8 DEFINITION  Divergence 
 The Divergence of a vector field F = P i + Q j + R k is the scalar function  
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