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1. Overview

My research interests are generally based in one hand on the study of partial dif-
ferential equation methods for the mathematical description of critical phenomena
in Statistical Physics and Euclidean Field Theory, in the other hand on the study
of analytical methods for problems in Riemannian geometry.

The leading theme of my current research in mathematical physics involves the
study of direct methods for integrals and operators of the type that appear naturally
in Equilibrium Statistical Mechanics and Euclidean Field Theory. The focus is on
the phenomenon of phase transition and the techniques involved stems mostly from
the theory of partial di¤erential equations and analysis.

The use of the Witten Laplacians in my work in statistical physics has triggered
my interest in the study of the topology and the geometry of Riemannian mani-
folds by means of di¤erential operators that are naturally de�ned in terms of the
di¤erential structure of the manifold
This present document describes my short-term research goal, achievements and
future plans.

2. Specific topics

Mathematical Physics: In my dissertation, I investigated direct methods
based on the analysis of the Witten Laplacians for the decay of the correlation
functions and the analyticity of the pressure for certain classical unbounded spin
systems.
In the context of classical equilibrium Statistical Mechanics, one is interested in a
natural mathematical description of an equilibrium state of a physical system which
consists of a very large number of interacting components. Consider for example
a piece of ferromagnetic metal (like iron, cobalt or nickel) in thermal equilibrium.
The piece consists of a very large number of atoms which are located at the sites of
a crystal lattice �: Each atom shows a magnetic moment which can be visualized as
a vector in R3: This magnetic moment is called the spin of the atom and represents
the position of the atom in the lattice. The set S of all possible orientations of
the spins, is called the state space of the system. Each element i of � is called a
(lattice) site. A particular state of the total system will be described by an element
x = (xi)i2� of the product space 
 = S�: This set 
 is called the con�guration
space.
The physical system considered above is characterized by a sharp contrast: the
microscopic structure is enormously complex, and any measurement of microscopic
quantities is subject to Statistical �uctuations. The macroscopic behavior, however
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can be described by means of a few parameters such as magnetization, tempera-
ture...and macroscopic measurement leads to apparently deterministic results. This
contrast between the microscopic and the macroscopic level is the starting point
of Classical Statistical Mechanics as developed by Maxwell, Boltzman and Gibbs.
Their basic idea may be summarized as follows: The microscopic complexity may
be overcome by a statistical approach and the macroscopic determinism then may
be regarded as a consequence of a suitable law of large numbers. According to this
philosophy, it is not adequate to describe the state of the system by a particular ele-
ment x of the con�guration space 
: The system�s state should rather be described
by a family of S�valued random variables or (if we pass to the joint distribution
of these random variables), by a probability measure � on 
 consistent with the
available partial knowledge of the system. In particular, � should take account of
the a priory assumption that the system is in thermal equilibrium.
Which kind of probability measure on 
 is suitable to describe a physical system in
equilibrium? The term equilibrium clearly refers to the notion of forces and energies
that act on the system. Thus one needs to de�ne a Hamiltonian � which assigns
to each con�guration x a potential energy �(x): In the physical system above, the
essential contribution to the potential energy comes from the interaction of the
microscopic components of the system and a possible external force. As soon as a
Hamiltonian � have been speci�ed, the answer to the question is generally believed
to be the probability measure

d�(x) = Z�1e���(x)d�(x)

Here d� refers to a suitable a priory measure (for example the counting measure
if 
 is �nite), � is a positive number which is proportional to the inverse of the
absolute temperature and Z > 0 is a normalization constant. The above measure
� is called the Boltzmann-Gibbs distribution.
As we have mentioned above the number of atoms in a ferromagnet is extremely
large. Consequently, the set � in our mathematical model should be very large.
According to a standard rule of a mathematical thinking, the intrinsic properties of
large objects can be made manifest by performing suitable limiting procedures. It
is therefore a common practice in Statistical Physics to pass to the in�nite volume
limit j�j ! 1: (This limit is also referred to as the thermodynamic limit). The
Boltzmann-Gibbs distribution does not admit a direct extension to in�nite systems.
However, when dealing with in�nite systems, we can still look at �nite subsystems
provided the rest is held �xed. Indeed, starting with a potential � we can de�ne
for each �nite subsystem � a Hamiltonian ��� which includes the interaction of �
with its �xed environment.
In the above, we argued that the physical systems like ferromagnets in equilibrium
are reasonably modelled by Gibbs measures. We then should expect the Gibbs
measure to exhibit a certain kind of behavior which re�ects the physical phenome-
non of phase transition. In order to �nd out what should happen, we consider the
spontaneous magnetization of a ferromagnet at low temperature. First we place the
ferromagnet in an external magnetic �eld (which is oriented along one of the axes
of the ferromagnetic crystal). Turning the �eld o¤ and waiting until equilibrium,
we �nd that the ferromagnet exhibits a macroscopic magnetic moment in the same
direction as the stimulating external �eld. A second experiment with an exter-
nal �eld in the opposite direction produces an equilibrium state with the opposite
magnetization as before. The ferromagnet thus admits two distinct equilibrium
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states.We thus expect that the physical phenomenon of phase transition should
be re�ected by the non-uniqueness of Gibbs measures. In 1968 Roland Dobroshin
who is considered as one of the founders of modern rigorous Statistical Mechanics
proposed a uniqueness condition which would imply the absence of phase transi-
tions. The condition roughly stated that the total interaction of a given spin with
all other spins should be very small. This has triggered some interest in the study
of the exponential decay of the two-point correlation function. The study of the
exponential decay of the correlation also gained much interest when Fröhlich and
Spencer discovered in 1981 that the non-uniqueness of equilibrium state is not the
only critical phenomenon of physical interest, but a di¤erent sort of transition is
characterized by a change from an exponential decay of the correlation to a power
law decay.

The methods for investigating the dynamical behavior of certain classical un-
bounded spin systems took an interesting direction when powerful and sophisticated
PDE techniques were introduced in the mathematical technology, The methods are
generally based on the analysis of suitable di¤erential operators
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which are in some sense, deformations of the standard Laplace Beltrami operator.
These operators commonly called Witten Laplacians were �rst introduced by Ed-
ward Witten [14] in 1982 in the context of Morse theory for the study of some
topological invariants of compact Riemannian manifolds. In 1994, Bernard Hel¤er
and Jöhannes Sjostrand [5] introduced two elliptic di¤erential operators

A
(0)
� := ��+r� �r

and
A
(1)
� := ��+r� �r+Hess�

These later operators serve to get direct methods for the study of integrals and
operators in high dimensions for problems of the type that appear in Statistical
Mechanics and Euclidean �eld theory. In 1996, Jöhannes Sjostrand [10] observed
that these so called Hel¤er-Sjostrand operators are in fact equivalent to Witten�s
Laplacians.
Numerous techniques have been developed in the study of Laplace integrals asso-
ciated to the equilibrium Gibbs state for certain unbounded spins systems. One
of the most striking result is an exact formula for the covariance of two functions
in terms of the Witten Laplacian on one forms leading to sophisticated methods
for estimating the correlation functions. This formula is in some sense a stronger
and more �exible version of the Brascamp-Lieb inequality [1].The formula may be
written as follow:

(2.1) cov(f; g) =

Z �
A
(1)�1

� rf �rg
�
e��(x)dx:

Let us brie�y mention that new methods that are purely based on spectral analysis
have been recently developed by Hel¤er-Bodineau [2], Sjostrand-Bach-Jecko[20].
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In these papers, the authors studied a certain class of unbounded spin models by
means of the spectrum of the Witten Laplacian. In [21], the asymptotics of the two
point correlation function to leading order in ��1 was obtained under under weaker
assumptions on the Hamiltonian. In 2003 V.Bach and J.S. Moller [21] proposed a
re�ned version of the results in [20] by introducing a new twisted Witten Laplacian
to relax the convexity assumption.

The results obtained in my dissertation involved exponentially weighted esti-
mates leading to the exponential decay of the correlation functions. I managed to
remove certain arti�cial assumptions made on the Hamiltonian in [5] where simi-
lar results were obtained in the one dimensional case. I also provided a formula
suitable for a direct proof of the analyticity of the Pressure for certain class of un-
bounded spin systems. The motivation for the study of the di¤erentiability or even
the analyticity of the pressure with respect to some distinguished thermodynamic
parameters such as temperature, chemical potential or external �eld comes from
the fact that the analytic behavior of the pressure is the classical thermodynamic
indicator for the absence or existence of phase transition. The relevancy of my
result in this direction can be seen by its potential contribution towards the solv-
ability of the dipole gas problem in Coulomb systems. The dipole gas and other
gases of particles interacting through Coulomb forces are very important systems
in Statistical Mechanics. In particular, for dipole gases, the lack of screening is well
known [35], and the analyticity of the pressure in the high temperature and low
activity region has been proved in an indirect way, by means of renormalization
group methods (see [36] and [37]).
A direct proof of the analyticity of the pressure based on estimating the coe¢ cients
of the Mayer (Taylor) series is still an open problem. The close relationship be-
tween this model and the Coulomb gas in the Kortelitz-Thouless phase (� > 8�),
go along with the non-existence of any proof for the analyticity of the pressure in
the Coulomb gas. Indirect arguments are attempted in [38],[39] and [40].
Motivated by the desire to bring some light to this question, we obtained the for-
mula

dn

dtn
P�(t) =

(n� 1)! < An�1g g >t;�

j�j ;

for the nth derivative of the pressure when regarded as function of some thermo-
dynamic parameter t: Here,

P�(t) =
1

j�j log
�Z

dxe��
t(x)

�
where

�t(x) = ��(x)� tg(x)
��; g are suitable C1�functions and

Agf :=
�
A1�t

��1rf �rg
We believe that after a suitable regularization of the Coulomb potential at short
distances, one can �t the problem into the framework of the models discussed in
my dissertation and hopefully get an estimate of the coe¢ cients of the Mayer series
through this new formula for the derivatives of the �nite volume pressure above.
This is one of our short term goal; however, the problem I am currently working
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on is to get a sharp estimate of < An�1g g >t;�for the analyticity of the pressure in
the thermodynamic limit.
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Geometric Analysis: In di¤erential geometry, the only natural di¤erential
operator on a Riemannian manifoldM is the exterior derivative, d, taking k�forms
to (k+1)�forms. This operator is de�ned purely in terms of the smooth structure
of the manifold. Using d, and a smooth function on M; we can de�ne a series of
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di¤erential operators

W
(k)
� = d�d

�
� + d

�
�d�

where
d�= e

��
2 de

�
2 and d��= e

�
2 d�e�

�
2 :

Here, d� is the exterior coderivative. These operators acting on k�forms on M
are called Witten Laplacians. They were �rst introduced by E.Witten [1] in 1982.
When � � 0; W

(k)
0 = �(k); the standard Laplace Beltrami operator. It is well

known that the sprectrum f�(k)g of �(k) contains both topological and geometric
information. In particular, by the Hodge theorem the dimension of the kernel of
�(k) equals the kth betti number, and so the Laplacians �(k) determine the Euler
characteristic which is a topological invariant of the manifold. On the other hand,
if we consider the heat equation�

@t +�
(k)
�
u = 0

on k�forms with solution given by the heat semigroup e�t�(k)

uo, uo being the
initial k�form, the behavior of the trace of the heat semigroup

Tr(e�t�
(k)

) =
X
i

e�t�
(k)
i

as t! 0 is controlled by an in�nite sequence of geometric data, involving the vol-
ume of the manifold and the integral of the scalar curvature. Now in the case where
the operators are given by theW(k)�

� s for a suitable nonzero smooth function �, one
can hope to get more general and �exible versions of the results already obtained
in the case of the Laplace Beltrami operator where � � 0: This is already seen
in analysis with the Hel¤er-Sjostrand formula for the covariance which provides a
more general and �exible version of the Brascamp-Lieb inequality.
Now we propose to formulate the problem which we hope will contribute to the
uni�cation of Analysis and Geometry.
We start with the construction of � in terms of the di¤erential structure of the
manifold.
Let M be a compact Riemannian manifold of dimension m with di¤erential struc-
ture (U�; '�)�2A, A: being an index set. A function u de�ned in M is said to be
in Cp(M) if for every �; the composite function

�
'�1�

��
u de�ned by�

'�1�
��
u(x) = u

�
'�1� (x)

�
x 2 ~U� = '� (U�) � Rm

is in Cp( ~U�): Let (u�)�2A be a family of smooth functions on ~U� satisfying

u� =
�
'� � '�1�

��
u� in '� (U� \ U�) :

It is kown that there exists a unique smooth function � on M such that

� � '�1� = u� for every � 2 A (see [2])

We now ask the following questions:
1. Given a suitable family (u�)�2A of smooth functions on ~U� as above, In what
sense can one generalize the results already obtained for the standard Laplace Bel-
trami operator if we replaced it byW(k)

� ?
2. For which di¤erential structure(s) the generalization is optimal?
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