King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

CODE 001

Calculus I FINAL EXAM

CODE 001

Semester II, Term 072 Date: Saturday, June 07, 2008 Net Time Allowed: 180 minutes

Name:		
ID: _	Sec:	

Check that this exam has 28 questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. The value of $tanh(\ln 3)$ is equal to
 - (a) 1
 - (b) $\frac{4}{5}$
 - (c) $-\frac{5}{4}$
 - (d) $-\frac{4}{5}$
 - (e) $\frac{1}{2}$
- 2. Let f(x) = 7 3x and $\epsilon = 0.03$. A possible value of δ such that $|f(x) + 5| < \epsilon \text{ whenever } |x 4| < \delta$

is

- (a) 0.04
- (b) 0.01
- (c) 0.03
- (d) -0.01
- (e) 0.1

- 3. If $f(x) = \frac{\sqrt{4-x^2}}{x}$, then $f'(x) = \frac{\sqrt{4-x^2}}{x}$
 - (a) $\frac{-4}{x^2\sqrt{4-x^2}}$
 - (b) $\frac{4}{x(4-x^2)^{3/2}}$
 - (c) $\frac{-x^2 \sqrt{4 x^2}}{x^2 \sqrt{4 x^2}}$
 - (d) $\frac{x}{\sqrt{4-x^2}}$
 - (e) $\frac{x^2 x 4}{\sqrt{4 x^2}}$
- 4. The value of the limit $\lim_{x\to -1^-} \frac{|x+1|}{x^2-1}$ is
 - (a) $\frac{1}{2}$
 - (b) 0
 - (c) $+\infty$
 - (d) 2
 - (e) $-\frac{1}{2}$

- 5. The value of the limit $\lim_{x \to -\infty} \tan^{-1}(x^4 x^2)$ is
 - (a) $-\infty$
 - (b) $-\frac{\pi}{2}$
 - (c) 0
 - (d) 1
 - (e) $\frac{\pi}{2}$
- 6. The function $f(x) = \ln(1 x^2)$ is continuous on
 - (a) [-1,1]
 - (b) (-1,1)
 - (c) $[1, +\infty)$
 - (d) $(0, +\infty)$
 - (e) $(-\infty,0)$

- 7. Which one of the following statements is **TRUE** about the function $f(x) = \frac{x^3}{x^2 + 1}$?
 - (a) The line y = x 1 is a slant (oblique) asymptote of f
 - (b) The line y = 0 is a horizontal asymptote for f
 - (c) f has no asymptotes
 - (d) The line y = x is a slant (oblique) asymptote of f
 - (e) f has two vertical asymptotes
- 8. The linear approximation of $f(x) = e^{-x^2}$ at 0 is
 - (a) $e^{-x^2} \approx 1 x$
 - (b) $e^{-x^2} \approx e^{-1} 2x$
 - (c) $e^{-x^2} \approx 0$
 - (d) $e^{-x^2} \approx 1$
 - (e) $e^{-x^2} \approx 1 + x$

- 9. An equation of the tangent line to the curve $y = \sin(\sin x)$ when $x = \pi$ is
 - (a) $y = x \pi$
 - (b) $y = \pi$
 - (c) $y = \pi(\pi x)$
 - (d) $y + x = \pi$
 - (e) y = 0
- 10. The value(s) of k that will make the function

$$f(x) = \begin{cases} \frac{\sin kx}{2x} & \text{if } x > 0\\ x^2 - k^2 & \text{if } x \le 0 \end{cases}$$

continuous on $(-\infty, +\infty)$ is (are)

- (a) $-1 \text{ and } \frac{1}{2}$
- (b) $-\frac{1}{2}$
- (c) $\frac{1}{2}$
- (d) 0 and $-\frac{1}{2}$
- (e) 2

11. If $y = \tanh^{-1}(\cosh(2x))$, then y' =

- (a) $\tanh(2x)$
- (b) $-2 \operatorname{sech}(2x)$
- (c) $-2 \operatorname{csch}(2x)$
- (d) $2x \operatorname{csch}(2x)$
- (e) $2 \operatorname{sech}(2x)$

12. If $y^x = (2 - x)^y$, then y' at (1, 1) is equal to

- (a) -1
- $(b) \quad 0$
- (c) 1
- (d) $-\ln 2$
- (e) ln 2

- 13. Using differentials (or, equivalently, a linear approximation), the value of $\sqrt{80.9}$ is approximately equal to
 - (a) $9 \frac{1}{90}$
 - (b) $9 \frac{1}{180}$
 - (c) $9 \frac{1}{360}$
 - (d) $9 \frac{1}{20}$
 - (e) $9 \frac{1}{10}$
- 14. The critical number(s) of the function $f(x) = x^{1/3} x^{-2/3}$ is (are)
 - (a) x = 0 only
 - (b) x = -2 only
 - (c) x = 0 and x = -1
 - (d) x = -2 and x = 0
 - (e) x = -1 only

15. The absolute maximum and absolute minimum values of the function

$$f(x) = \sin x - \cos x$$

on the interval $[0,\pi]$ are respectively

- (a) 0 and -1
- (b) $\sqrt{2}$ and -1
- (c) 1 and 0
- (d) $\frac{\sqrt{2}}{2}$ and -1
- (e) 1 and -1
- 16. If f''(x) = 12x, f(0) = 6, f'(0) = 0, then the sum of the coefficients of f is
 - (a) 8
 - (b) 2
 - (c) 9
 - (d) 6
 - (e) 12

17. Newton's Method is used to find a root of the equation

$$\sin x - \tan(2x) = 0.$$

If the first approximation is $x_1 = \frac{\pi}{2}$, then the second approximation x_2 is equal to

- (a) $\frac{\pi}{2} + 1$
- (b) $\frac{\pi}{2}$
- (c) 0
- (d) $\frac{\pi 1}{2}$
- (e) $\frac{\pi + 1}{2}$
- 18. A stone dropped in a still pond generates a circular wave whose radius increases at a constant rate of 3 ft/s. The rate at which the area of the circular wave is increasing after 10 s is (ft: feet; s: seconds)
 - (a) $60\pi \text{ ft}^2/\text{ s}$
 - (b) $90\pi \text{ ft}^2/\text{ s}$
 - (c) $180\pi \text{ ft}^2/\text{ s}$
 - (d) $30\pi \text{ ft}^2/\text{ s}$
 - (e) $270\pi \text{ ft}^2/\text{ s}$

19.
$$\lim_{x \to 0} \frac{x - \sin(x^2)}{x^2 - x} =$$

- (a) -1
- (b) 0
- (c) 1/2
- (d) 1
- (e) $+\infty$

20. If
$$y\sin(x^2) = x\sin(y^2)$$
, then $\frac{dy}{dx} =$

(a)
$$\frac{\sin(y^2) + xy\cos(x^2)}{\sin(y^2) - xy\cos(x^2)}$$

(b)
$$\frac{\sin(y^2)}{\sin(x^2) - 2xy\cos(y^2)}$$

(c)
$$\frac{\cos(y^2) - 2xy\sin(x^2)}{\cos(x^2) - 2xy\sin(y^2)}$$

(d)
$$\frac{\sin(x^2) + \cos(y^2)}{2xy + \sin(y^2)}$$

(e)
$$\frac{\sin(y^2) - 2xy\cos(x^2)}{\sin(x^2) - 2xy\cos(y^2)}$$

- $21. \quad \lim_{x \to 1} (2-x)^{\tan\left(\frac{\pi}{2}x\right)} =$
 - (a) 0
 - (b) e^{π}
 - (c) 1
 - (d) $e^{2/\pi}$
 - (e) $e^{-2/\pi}$
- 22. The sum of the coordinates of the point P on the curve $y=x^2$ that is **closest** to the point $\left(2,\frac{1}{2}\right)$ is equal to
 - (a) 2
 - (b) 0
 - (c) 1
 - (d) 5
 - (e) $\frac{5}{2}$

23. The most general antiderivative of $f(x) = \sqrt[4]{x^3} - \sin x + \frac{3}{x}$ is

(a)
$$\frac{4}{7}x^{7/4} + \cos x + 3\ln x + C$$

(b)
$$\frac{6}{7}x^{7/6} + \cos x + 3\ln|x| + C$$

(c)
$$\frac{4}{7}x^{7/4} - \cos x + 3\ln|x| + C$$

(d)
$$\frac{4}{7}x^{7/4} + \cos x + 3\ln|x| + C$$

(e)
$$\frac{5}{7}x^{7/5} + \cos x + 3\ln|x|$$

- 24. The function $f(x) = 3x^5 5x^3 + 3$
 - (a) has a local maximum at x = 1
 - (b) is increasing on $(0, +\infty)$
 - (c) has a local minimum at x = 0
 - (d) is decreasing on $(-\infty, 1)$
 - (e) is decreasing on (-1,1)

- 25. Which one of the following statements is **TRUE**?
 - (a) If f'(x) = g'(x) for all x in an interval (a, b), then f(x) = g(x) for all x in (a, b)
 - (b) If f is differentiable and f(-1) = f(1) then there is a number c such that |c| < 1 and f'(c) = 0
 - (c) If $f(a) \ge f(x)$ when x is near a, then f has a local minimum at a
 - (d) The function $f(x) = x^3 + 4x + 4$ has no real roots in the interval [-1, 1]
 - (e) If f has a local maximum or a local minimum at c, then f'(c) = 0
- 26. The graph of $f(x) = \frac{x^2}{x^2 1}$
 - (a) has two inflection points
 - (b) is concave down on the interval $(0, +\infty)$
 - (c) is concave up on the interval $(-\infty, 1)$
 - (d) is concave up on the intervals $(-\infty, -1)$ and $(1, +\infty)$
 - (e) has one inflection point

- 27. If f(1) = -2 and $f'(x) \le 7$ for all values of x, then the largest possible value that f(3) can have is (Hint: Use the Mean Value Theorem)
 - (a) 10
 - (b) 9
 - (c) 12
 - (d) 14
 - (e) 11
- 28. Which one of the following statements is **FALSE** about the function $f(x) = \frac{\ln x}{x}$?
 - (a) f is concave up on $(10, +\infty)$
 - (b) f is decreasing on $(e, +\infty)$
 - (c) The absolute maximum value of f is $\frac{1}{e}$
 - (d) The graph of f has inflection point at x = e
 - (e) f has one inflection point

Q	MM	V1	V2	V3	V4
1	a	b	е	a	a
2	a	b	С	е	d
3	a	a	С	d	d
4	a	a	d	С	е
5	a	е	a	b	c
6	a	b	С	d	a
7	a	d	d	С	е
8	a	d	С	a	С
9	a	d	d	a	С
10	a	d	a	a	е
11	a	С	a	a	a
12	a	a	b	е	С
13	a	b	С	a	e
14	a	b	a	d	d
15	a	b	С	С	С
16	a	a	a	С	c
17	a	е	d	a	b
18	a	С	С	d	e
19	a	a	b	b	a
20	a	е	е	a	С
21	a	d	b	b	a
22	a	a	b	d	d
23	a	d	С	d	b
24	a	е	С	С	е
25	a	b	d	d	b
26	a	d	b	d	d
27	a	С	b	d	С
28	a	d	е	b	d