KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS DEPARTMENT OF MATHEMATICAL SCIENCES

MATH 101 – Final Exam

Sunday – January 20, 2008

Test Code: Master	Duration: 3 Hours
Student's Name:	
ID #:	Section #:
Important Instructions	

Important Instructions:

- All types of CALCULATORS, PAGERS, OR MOBILES ARE NOT 1. ALLOWED to be with you during the examination.
- 2. Use an HB 2 pencil.
- Use a good eraser. Do not use the eraser attached to the pencil. 3.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When you bubble your ID number and Section number, be sure that bubbles match with the number that you write.
- 6. The test Code Number is already typed and bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.
- Check that the exam paper has 28 questions. 9.

- 1. $\lim_{x \to \frac{\pi}{3}} \frac{\tan x \sqrt{3}}{x \frac{\pi}{3}} =$
 - (a) -1
 - (b) ∞
 - (c) 3
 - (d) 4
 - (e) 1

- 2. The equation of the horizontal asymptote of the function $f(x) = \frac{\sinh x}{e^x} \text{ is}$
 - (a) y = 1
 - (b) $y = \frac{1}{2}$
 - (c) y = 0
 - (d) $y = -\frac{1}{2}$
 - (e) $x = -\frac{3}{2}$

- 3. The sum of the slopes of the lines through the point (1, -3) that are tangent to the parabola $y = x^2$ is
 - (a) 4
 - (b) -6
 - (c) 0
 - (d) 6
 - (e) -2

- 4. If $f(t) = t^2 + 3t + 5$ is the position of an object at time t, where f(t) is in feet and t in seconds, then the average velocity of the object over the interval [1,3] is
 - (a) 6 ft/sec
 - (b) 7 ft/sec
 - (c) 5 ft/sec
 - (d) -2/3 ft/sec
 - (e) 23/2 ft/sec

- 5. If $g(x) = \frac{x^2}{f(\sqrt{x})}$, f(2) = 1, and f'(2) = -1, then g'(4) =
 - (a) 12
 - (b) -4
 - (c) 8
 - (d) 0
 - (e) 6

- $6. \qquad \lim_{x \to 0} \frac{\tan^2 2x}{x \sin x} =$
 - (a) 4
 - (b) ∞
 - (c) does not exist
 - (d) 1
 - (e) 2

- 7. If the function $f(x) = \begin{cases} kx^2 & \text{if } x \leq 2\\ 2x + k^2 & \text{if } x > 2 \end{cases}$ is continuous everywhere then k equals
 - (a) -2 only
 - (b) $\frac{1}{2}$ only
 - (c) 2 and -2
 - (d) 2 only
 - (e) -3 only

- 8. If $x^2y + 3y + \sin(xy) = 6$, then y'(0) =
 - (a) 0
 - (b) $-\frac{3}{2}$
 - (c) -3
 - (d) $-\frac{2}{3}$
 - (e) -2

- 9. Which of the following statements is **TRUE** about the function $f(x) = x^{2/3} + 5$?
 - (a) f(x) is discontinuous at x = 0
 - (b) f(x) is differentiable at x = 0
 - (c) f(x) has no critical number
 - (d) f(x) has a vertical asymptote
 - (e) f(x) has a vertical tangent at x = 0

10. If
$$f(x) = \begin{cases} |2x - 5| & \text{if } x < 1 \\ -1 & \text{if } x = 1 \\ \sqrt{8x + 1} & \text{if } x > 1 \end{cases}$$
, then $\lim_{x \to 1} f(x)$

- (a) is equal to 3
- (b) is equal to -1
- (c) is equal to -3
- (d) does not exist
- (e) is equal to 7

11. Using differentials, $(8.06)^{2/3}$ can be approximated to:

- (a) 4.01
- (b) 4.02
- (c) 4.03
- (d) 3.98
- (e) 4.08

12. The function $f(x) = x - \sqrt{x}$, $0 \le x \le 4$ has

- (a) absolute maximum 2 and no absolute minimum
- (b) absolute maximum 0 and absolute minimum $-\frac{1}{4}$
- (c) absolute maximum 2 and absolute minimum $-\frac{1}{4}$
- (d) absolute maximum 2 and absolute minimum 0
- (e) absolute maximum 4 and absolute minimum $\frac{1}{4}$

- 13. The linear approximation to $\frac{1}{1+x}$ at x=0 is
 - (a) $2x \frac{1}{2}$
 - (b) 1 x
 - (c) x 1
 - (d) $2 \frac{1}{2}x$
 - (e) x

- 14. If $\cosh(\ln(2x)) = 1$, then
 - (a) $\cosh(2x) = e$
 - (b) $\cosh(2x) = \frac{1}{2\sqrt{e}}$
 - (c) $\cosh(2x) = \frac{1}{e^2}$
 - (d) $\cosh(2x) = \frac{e^2 + 1}{2e}$
 - (e) $\cosh(2x) = \frac{e+1}{2}$

15. If $f(x) = x^{50} + \ln(x+1)$, then $f^{(101)}(0) =$

- (a) -(100)!
- (b) -(101)!
- (c) (101)!
- (d) (100)!
- (e) 0

16. Given the function $f(x) = \frac{1}{x^2 + 1}$ with $f'(x) = \frac{-2x}{(x^2 + 1)^2}$ and $f''(x) = \frac{6x^2 - 2}{(x^2 + 1)^3}$ which of the following statements is **TRUE** about the graph of f(x)?

- (a) has one inflection point only
- (b) concave up on $(-\infty, 0)$ and concave down on $(0, \infty)$
- (c) concave down on $\left(-\infty, -\frac{1}{\sqrt{3}}\right)$ & $\left(\frac{1}{\sqrt{3}}, \infty\right)$, and up on $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$
- (d) concave up on $\left(-\infty, -\frac{1}{\sqrt{3}}\right)$ & $\left(\frac{1}{\sqrt{3}}, \infty\right)$, and down on $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$
- (e) concave up on $\left(-\infty, -\sqrt{3}\right)$ & $\left(\sqrt{3}, \infty\right)$, and down on $\left(-\sqrt{3}, \sqrt{3}\right)$

17. If
$$f(x) = \log_3 \sqrt{\frac{x-2}{x^2+1}}$$
, then $f'(3) =$

- (a) $\frac{1}{5 \ln 3}$
- (b) $-\frac{3}{5 \ln 3}$
- (c) $\frac{3}{5 \ln 3}$
- (d) $\frac{1}{4\ln 3}$
- (e) $\frac{1}{5}$

- 18. For the graph of the curve $y = 3x^5 5x^3 + 3$, which one of the following is **FALSE**?
 - (a) The graph has the local minimum at (0,3).
 - (b) The graph is increasing over the interval $(1, \infty)$.
 - (c) The graph has the local minimum at (1,1).
 - (d) The graph has the local maximum at (-1, 5).
 - (e) The graph is decreasing over the interval (-1,1).

- 19. If c is a number that satisfies the conclusion of the mean value theorem on the interval [0,1] for the function $f(x) = x^3 + 2x + 1$, then $12c^2 + 1$ is equal to
 - (a) 3
 - (b) 5
 - (c) 7
 - (d) Undefined (The mean value theorem does not apply)
 - (e) 2

- 20. $\lim_{x \to 0} \left(\frac{1}{x} \frac{1}{e^x 1} \right) =$
 - (a) $+\infty$
 - (b) $-\frac{1}{2}$
 - (c) $\frac{1}{2}$
 - (d) 0
 - (e) 1

21. If $y = (1 + \cos x)^{\frac{1}{x+1}}$ then y'(0) =

- (a) $-\ln 2$
- (b) 1
- (c) ln 4
- $(d) \ln 8$
- (e) $-\ln 4$

22. If $y = \tan^{-1}(\operatorname{csch} \sqrt{x})$, then y' =

- (a) $-\frac{\operatorname{sech}\sqrt{x}}{2\sqrt{x}(\operatorname{csch}\sqrt{x})}$
- (b) $-\frac{\operatorname{csch}\sqrt{x}}{2\sqrt{x}}$
- (c) $-\frac{\operatorname{sech}\sqrt{x}}{2\sqrt{x}}$
- (d) $\frac{\operatorname{sech}\sqrt{x}}{2\sqrt{x}}$
- (e) $\frac{\operatorname{csch}\sqrt{x}}{2\sqrt{x}}$

- 23. Starting with $x_1 = 1$, the approximation x_3 to the root of the equation $x + \ln x = 0$ obtained by using Newton's method is
 - (a) $\frac{1 + \ln\left(\frac{1}{2}\right)}{3}$
 - $(b) \quad \frac{1+\ln 2}{3}$
 - (c) $\frac{1}{2}$
 - (d) $\frac{3}{5} + \frac{3}{5} \ln \frac{2}{3}$
 - (e) ln 2

24. A paper cup has the shape of a cone with height 10 cm and radius 3 cm (at the top). If water is poured into the cup at a rate of 3 cm³/s, then when the water is 5 cm deep, the water level is rising at a rate of

(Volume of cone =
$$\frac{1}{3}\pi r^2 h$$
)

- (a) $\frac{9\pi}{8}$ cm/s
- (b) $\frac{4}{3\pi} \text{ cm/s}$
- (c) $\frac{8}{9\pi}$ cm/s
- (d) $\frac{3}{4\pi}$ cm/s
- (e) $\frac{8\pi}{9}$ cm/s

- 25. Let f(x) be the function defined by f(x) = 2x 1 and $\epsilon = 0.002$. The largest possible δ such that $|f(x) 3| < \epsilon$ whenever $|x 2| < \delta$ is
 - (a) 0.002
 - (b) 0.003
 - (c) 0.005
 - (d) 0.001
 - (e) 0.01

- 26. If a particle moves in a straight line and has acceleration given by a(t) = 6t + 4, its initial velocity is v(0) = -6 cm/s, and its initial displacement is s(0) = 0 cm, then s(1) equals
 - (a) -3 cm
 - (b) 6 cm
 - (c) 1 cm
 - (d) -6 cm
 - (e) 12 cm

27. If $y'' = \sin x + x^2 - x$, y'(0) = 1 and y(0) = 3, then $y = x^2 + 2$

(a)
$$\sin x - \frac{1}{6}x^3 + \frac{1}{12}x^4 + 3$$

(b)
$$\sin x - \frac{1}{6}x^3 + \frac{1}{12}x^4 + 2x + 3$$

(c)
$$-\sin x - \frac{1}{6}x^3 + \frac{1}{12}x^4 + 2x + 3$$

(d)
$$\cos x - \frac{1}{6}x^3 + \frac{1}{12}x^4$$

(e)
$$\cos x - \frac{1}{6}x^3 + \frac{1}{12}x^4 + 2x + 3$$

- 28. If 2700 cm² of material is used to make a rectangular box with a square bottom and no top, then the largest possible volume for the box is
 - (a) 30 cm^3
 - (b) 16900 cm^3
 - (c) 13500 cm^3
 - (d) 500 cm^3
 - (e) 1540 cm^3