

1. (5-points) Find a sequence of elementary matrices whose product is the inverse of the matrix $\left[\begin{array}{ll}2 & 1 \\ 4 & 3\end{array}\right]$. Verify your answer.

$$
\begin{aligned}
& {\left[\begin{array}{cc|cc}
(2) & 1 & 1 & 0 \\
\hline 14 & 3 & 0 & 1
\end{array}\right]\left[\begin{array}{cc|cc}
2 & \mathbb{T} & 1 & 0 \\
0 & (1) & -2 & 1
\end{array}\right] .} \\
& E_{1}=\left[\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right] \\
& \xrightarrow{E_{2}}\left[\begin{array}{cc|cc}
(2) & 0 & 3 & -1 \\
0 & 1 & -2 & 1
\end{array}\right] \\
& \xrightarrow{E_{3}}\left[\begin{array}{cc|cc}
1 & 0 & 3 / 2 & -1 / 2 \\
0 & 1 & -2 & 1
\end{array}\right] \\
& E_{2}=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right] \\
& E_{3}=\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & 1
\end{array}\right] \\
& \Rightarrow A^{-1}=\left[\begin{array}{cc}
3 / 2 & -1 / 2 \\
-2 & 1
\end{array}\right] \stackrel{\text { Verification }}{=} E_{3} E_{1} E_{2}=\left[\begin{array}{cl}
1 / 2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
3 & -1 \\
-2 & 1
\end{array}\right]=\left[\begin{array}{cc}
3 / 2 & -1 / 2 \\
-2 & 1
\end{array}\right]
\end{aligned}
$$

2. (4-points) Use Cramer's Rule to find x_{3} where

$$
\begin{aligned}
& \begin{array}{c}
x_{1}+x_{2}-x_{3}=2 \\
3 x_{1}-x_{2}+x_{3}=-1 \\
x_{1} \\
+x_{3}=0
\end{array} \\
& |A|=\left|\begin{array}{ccc}
1 & 1 & -1 \\
3 & -1 & 1 \\
1 & 0 & 1
\end{array}\right| \frac{3 e 1}{\text { rows }}(1-1)+0+(-1-3)=-4 \\
& \left.\left\lvert\, \begin{array}{ccc}
1 & 1 & -1 \\
3 & -1 & 1 \\
1 & 0 & 1
\end{array}\right.\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right] \\
& \left|A_{3}\right|=\left|\begin{array}{ccc}
1 & 1 & 2 \\
3 & -1 & -1 \\
1 & 0 & 0
\end{array}\right| \frac{\text { zed }}{\text { roans }}(-1+2)=1 \\
& \Rightarrow \quad x_{3}=\frac{\left|A_{3}\right|}{|A|}=-\frac{1}{4} .
\end{aligned}
$$

3. (6-points) Given $A=\left[\begin{array}{rrr}1 & 0 & 3 \\ 1 & -1 & 1 \\ 0 & 3 & 2\end{array}\right]$.
(a) Use determinants to show that A is nonsingular.
(b) Find adj A.
(c) Use (a) and (b) to find A^{-1}.
(a) $|A|=\left|\begin{array}{ccc}1 & 0 & 3 \\ 1 & -1 & 1 \\ 0 & 3 & 2\end{array}\right|=(-2-3)+0+3(3-0)=4 \neq 0$
$\Rightarrow A$ in nansingular
(b)

$$
\begin{aligned}
& \operatorname{cof} A=\left[\begin{array}{ccc}
-5 & -2 & 3 \\
9 & 2 & -3 \\
3 & 2 & -1
\end{array}\right] \Rightarrow \\
& \operatorname{adj} A=(\operatorname{cof} A)^{\top}=\left[\begin{array}{ccc}
-5 & 9 & 3 \\
-2 & 2 & 2 \\
3 & -3 & -1
\end{array}\right]
\end{aligned}
$$

(c) $A^{-1}=\frac{1}{|A|} \operatorname{adj} A$

$$
=\left[\begin{array}{ccc}
-5 / 4 & 9 / 4 & 3 / 4 \\
-1 / 2 & 1 / 2 & 1 / 2 \\
3 / 4 & -3 / 4 & -1 / 4
\end{array}\right]
$$

Check: $A A^{-1}=\left[\begin{array}{ccc}1 & 0 & 3 \\ 1 & -1 & 1 \\ 0 & 3 & 2\end{array}\right]\left[\begin{array}{ccc}-5 / 4 & 9 / 4 & 3 / 4 \\ -1 / 2 & 1 / 2 & 1 / 2 \\ 3 / 4 & -3 / 4 & -1 / 4\end{array}\right]$

$$
=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \nu
$$

\qquad Serial \#: \qquad
\qquad

1. (5-points) Find a sequence of elementary matrices whose product is the inverse of

$$
\begin{aligned}
& \text { the matrix }\left[\begin{array}{ll}
3 & 2 \\
6 & 5
\end{array}\right] \text {. Verify your answer. } \\
& {\left[\begin{array}{cc|cc}
(3) & 2 & 1 & 0 \\
\sqrt{6} & 5 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cc|cc}
3 & (2) & 1 & 0 \\
0 & (1) & -2 & 1
\end{array}\right] \quad E_{1}=\left[\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{cc|cc}
3 & 0 & 5 & 0 \\
0 & 1 & -2 & 1
\end{array}\right] \Rightarrow E_{2}=\left[\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cc|cc}
1 & 0 & -5 / 3 & -2 / 3 \\
0 & 1 & -3 & 1
\end{array}\right] \Rightarrow E_{3}=\left[\begin{array}{cc}
1 / 3 & 0 \\
0 & 1
\end{array}\right] \\
& \Rightarrow A^{-1}=E_{3} E_{2} E_{1}=\left[\begin{array}{cc}
-5 / 3 & -2 / 3 \\
-3 & 1
\end{array}\right] \\
& \text { Chock: } E_{3} E_{2} E_{1}=\left[\begin{array}{cc}
1 / 3 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 / 3 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
5 & -2 \\
-2 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
5 / 3 & -2 / 3 \\
-2 & 1
\end{array}\right]=A^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. (4-points Use Cramer's Rule to find } \begin{array}{c}
x_{3} \text { where } \\
\begin{array}{l}
x_{1}+ \\
x_{1}+x_{2}-x_{3}=2 \\
3_{3}=-1 \\
3 x_{1}-x_{2}+x_{3}=0
\end{array}
\end{array} \Leftrightarrow\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & 1 & -1 \\
3 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right] \\
& |A|=\left|\begin{array}{ccc}
1 & 0 & 1 \\
1 & 1 & -1 \\
3 & -1 & 1
\end{array}\right| \frac{\text { sst }}{\overline{\text { row }}(0)+(0)-4=-4} \\
& \left|A_{3}\right|=\left|\begin{array}{ccc}
1 & 0 & 2 \\
1 & 1 & -1 \\
3 & -1 & 0
\end{array}\right|=-1+0+2(-4)=-9 \\
& \Rightarrow x_{3}=\frac{|A|}{\left|A_{3}\right|}=\frac{9}{4}
\end{aligned}
$$

3. (6-points) Given $A=\left[\begin{array}{rrr}3 & 0 & 3 \\ 1 & 1 & -1 \\ 2 & 2 & 0\end{array}\right]$.
(a) Use determinants to show that A is nonsingular.
(b) Find adj A.
(c) Use (a) and (b) to find A^{-1}.
(a) $|A|=\left|\begin{array}{ccc}3 & 0 & 3 \\ 1 & 1 & -1 \\ 2 & 2 & 0\end{array}\right|=3(2)+0+3(0)=6 \neq 0$
$\Rightarrow A$ is nonsingular

$$
\begin{aligned}
& \text { (b) } \operatorname{cof} A=\left[\begin{array}{ccc}
2 & -2 & 0 \\
6 & -6 & -6 \\
-3 & 6 & 3
\end{array}\right] \\
& \Rightarrow \operatorname{adj} A=(\operatorname{cof} A)^{T}=\left[\begin{array}{ccc}
2 & 6 & -3 \\
-2 & -6 & 6 \\
0 & -6 & 3
\end{array}\right] \\
& \text { (c) } A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\left[\begin{array}{ccc}
1 / 3 & 1 & -1 / 2 \\
-1 / 3 & -1 & 1 \\
0 & -1 & 1 / 2
\end{array}\right] \\
& \text { check: } A A^{-1}=\left[\begin{array}{ccc}
3 & 0 & 3 \\
1 & 1 & -1 \\
2 & 2 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 / 3 & 1 & -1 / 2 \\
-1 / 3 & -1 & 1 \\
0 & -1 & 1 / 2
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

