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Abstract

The main purpose of this paper is to prove some results of uniform bound-
edness principle type without the use of Baire’s category theorem in certain
topological vector spaces; this provides an alternate route and important tech-
nique to establish certain basic results of functional analysis. As applications,
among other results, versions of the Banach-Steinhaus theorem and the Nikodym
boundedness theorem are obtained.

1 Introduction

The classical uniform boundedness principle asserts: if a sequence {f,} of continuous
linear transformations from a Banach space X into a normed space Y is pointwise
bounded, then {f,} is uniformly bounded. The proof of this result is most often based
on the Baire’s category theorem (e.g. see Theorem 4.7-3 [18] and Theorem 3.17 [26]);
the interested reader is referred to Eidelman et al. [10] for a new approach in this
context. Several authors have sought proof of this type of results without Baire’s
theorem in various settings (see, for example, Danes [4], Khan and Rowlands [16],
Nygaard [23] and Swartz [27]).

In 1933, Nikodym [21] proved: If a family M of bounded scalar measures on a o-
algebra A is setwise bounded, then the family M is uniformly bounded. This result is
a striking improvement of the uniform boundedness principle in the space of countably
additive measures on 4; a Baire category proof of this theorem may be found in ([9],
IV.9.8, p. 309). Nikodym theorem has received a great deal of attention and has
been generalized in several directions (see, e.g., Darst [5], Drewnowski [8], Labuda
[19], Mikusinski [20] and Thomas [28]); in particular, the proofs of this result without
category argument for finitely additive measures with values in a Banach space (quasi-
normed group) are provided by Diestel and Uhl ([6], Theorem 1, p. 14) and Drewnoski
([7], Theorem 1), respectively. For other related generalizations of this theorem, we
refer to the bibliography in [6].
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Recently, Nygaard [22-23] has used the notion of a “thick set” to prove the uniform
bounded principle for transformations on a thick subset of a Banach space X with
values in another Banach space Y. The concept of a thick set goes back to the ideas
of Kadets and Fonf (see [12], [13], [15]). It is worth pointing out that the concept of
“thick sets” heavily depends on the dual of X and the development of their theory
essentially relies on the Hahn-Banach separation theorem in X. The broader class of
“thick sets” contains as a subclass the class of second category sets.

In this paper, certain aspects of the development of the uniform boundedness prin-
ciple are discussed; in particular, results of the type of uniform boundedness principle
are proved on a domain of second category and beyond without employing Baire’s cat-
egory argument. First, we prove a a general principle of equicontinuity for maps on
a topological vector space of the second category with values in another topological
vector space. A similar result is obtained for transformations on “thick sets” of a com-
plete locally convex space X satisfying the property (V) and taking values in a locally
convex space Y; this generalizes the uniform boundedness principle of Nyagaard [23]
to a class of locally convex spaces. An analogue of the new result is given for maps
from X* into Y*. Some versions of the Banach-Steinhaus theorem and the Nikodym
boundedness theorem are also given.

2 Notations and Preliminaries

Let P be a family of seminorms on a Hausdorff locally convex space X. Let Bx = {z €
X :p(z) <1 for each p € P} and Sx = {z € X : p(z) = 1 for each p € P} (cf. [3], p.
III.13-14). The strong dual X* of X is a locally convex space (details may be found
in [3], p. IV. 14-23). For our purposes, it would be enough to consider the following:
Suppose that € is a family of bounded subsets of X. The pair (€2, |-]) induces a locally
convex topology on X* via the family P* of seminorms

p*(z*) = sup{|z*(z)| : x € A, A€ Q}.

Similarly, if ) is a family of seminorms on a locally convex space Y, then Q* will be
the induced family of seminorms defining the locally convex topology on Y*.
Let X and X* be in duality. The polar of A C X and B C X* are, respectively,
defined by
A® = {x* € X* :sup |z* ()] < 1}.
€A
B ={z¢ec X : sup |z*(z)| <1}
z*eB
where we consider X to be embedded in X**, bidual of X (see Yosida [30]).
Locally convex spaces provide a very general framework for the Hahn-Banach the-
orem and its consequences; in particular, we shall need the following separation result.

Proposition 2.1 ([27], Prop.13, p. 173). Let A be a closed and absolutely convex
subset of a Hausdorff locally convexr space X and x ¢ A. Then there exists x* € X*
such that |x*(z)| > 1 > sup{z*(y) : y € A}.
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In what follows we will use the terminology of Nygaard [22-23].

A subset A of a normed space X is norming for X* if for some § > 0, irgf sup |z*(x)| >
T*ESx* zeA

0. Analogously, a subset B of X* is norming for X (or w*-norming) if for some § > 0,

i%f sup |z*(z)] > §. We say a subset A of X is thin if it is countable union of an
TESX g*eB
increasing sequence of sets which are non-norming for X*. A set which is not thin, is

called a thick set.
The concept of w*-thin and w*-thick sets can be defined in the same way.

A set A in a complex vector space X is norming if for some d > 0, ¢o U rAl D
[r|=1
0Bx. However, we shall employ ¢o(+A) D dBx for simplicity.

It will be interesting to formulate the above definitions in the context of an arbitrary
locally convex space.

Let G be a commutative group. A non-negative valued function ¢ on G is said to
be a quasi-norm if it has the following properties for any z,y in G: (i) ¢(0) = 0, (ii)
q(z) = q(—z), (ili) ¢(z +y) < q(z) + q(y).

The relationship of Functional Analysis and Measure Theory is not so easy to
understand (for some connections, we refer to [14]). Recently, Abrahamsen et al.
[1] have established in Prop. 3.2, boundedness of a vector measure by utilizing the
concept of a thick set; thereby reflecting growing interaction between these two subjects.
Consequently, such an interplay will play a part here.

Let G be a commutative Hausdorff topological group and R a ring of subsets of a
set X. A function p: R — G is said to be: (i) measure if pu(¢) = 0 and pu(F U F) =
u(E) + u(F) where E and F are in R with EN F = ¢ (ii) exhaustive if for every
sequence {E,} of pairwise disjoint sets in R, nh_% w(Ey,) = 0.

The notion of a submeasure has been extensively studied by Drewnoski (see [7-8]
and the references therein). The applications of this concept are enormous (e.g. see
[8] and [24]). Group-valued submeasures have been introduced by Khan and Rowlands
[17] and their work has been further investigated by Avallone and Valente [2].

Let G be a commutative lattice group (¢-group). A quasi-norm ¢ on G is an /(-
quasi-norm if g(z) < ¢(y) for all z,y in G with |z| < |y| where |z| = 2T +2~. An
(-quasi-norm generates a locally solid group topololgy on G (cf. Proposition 22C
[14]). Following Khan and Rowlands [17], a G-valued function p on R is a submeasure
if u(¢p) =0, W(EUF) < p(E)+up(F) forall E, Fin R with ENF = ¢ and p(E) < u(F)
for all £, F in R with £ C F. Clearly, in this case u(E) > 0 for all £ in R.

3 Main Results

Khan and Rowlands [16] have obtained the following improvement of Theorem 2 due
to Danes [4].

Theorem A ([16], Corollary 1). Let X be a topological vector space, {x,} a sequence
in X such that lim x,, =0, and {p,} a sequence of real sub-additive functionals on X

n—oo
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satisfying the condition:
“there exists a sequence {ay} of real numbers, ay — 400 as k — oo, such that, for
each k,n =1,2,..., the set By,, = {z € X : p,(z) < a} is closed in X”.

If limsup(sup p,(z)) = +oo for each neighbourhood U of 0 in X, then the set
n zelU

Z ={z € X : limsupp,(z, + z) = o0 or limsup p,(x, — z) = +0oo} is a residual
Gs-set in X. " "

The following example reveals that Theorem A is not true, in general, if Z is
replaced by either Z* or Z~ where Zt ={x € X : 2 >0}, Z~- ={r € X : £ <0} and
Z=7tUZ".

Let X be the usual space of real numbers. We assume that x,, = 0 for each n € N.

Define p,(z) = n|z| (x € X,n € N). Here Z~ = ¢ and so Z~ can not be residual
Gs-set while Z is a residual Gs-set, for X \ ZT = {0} is of first category in X. Thus,
either ZT or Z~ can be a residual Gs-set.

As an application of Theorem A, we establish a principle of equicontinuity in the
following result; this leads to an alternative proof of the Banach-Steinhaus theorem
given by Rudin [25].

Theorem 1 (Principle of equicontinuity). Let X be a topological vector space of the
second category, Y a Hausdorff topological vector space and {f,} a sequence of contin-
uous linear transformations of X into'Y such that the set {f,(x)} is bounded for each
x € X. Then the sequence {f,} is equicontinuous.

Proof. Let the topology of Y be determined by a family {g; : i € I} of F-seminorms

(definition and details may be found in [29], p. 1-3). Suppose that the sequence

{fn} is not equicontinuous. Then for some continuous quasi-norm ¢;,, which for the

sake of simplicity we denote by ¢, and any 7-neighbourhood U of 0 in X, there exist

a sequence {x,} in U and a sequence of integers ny, < ng, < ng, < --- such that

q(fo,(xn)) > k (k= 1,2,...). It follows that limsup(sup¢(f.(z))) = +oo. The
n zeU

functionals qof,(n = 1,2,...) satisfy the conditions of Theorem A (taking =, = 0 for
allm=1,2,...), and so the set

Z={z€eX: lignsup q(fn(2)) = 400}

is a residual Gg-set in X. Thus X \ Z is of the first category. Since X is of the second
category, it follows that Z is non-empty; this implies that there is a point zy € X such
that lim sup ¢(f,.(20)) = +00. This contradicts the hypothesis. Thus the sequence {f,,}

is equicontinuous. ®m
An immediate consequence of the above theorem is given below.

Theorem 2 (Banach-Steinhaus theorem). Let X and Y be as in Theorem 1 and let
{fn} be a sequence of continuous linear transformations of X into Y such that f(x) =
lim f,(z) exists for each x € X. Then f is a continuous linear transformation of X

mto Y.



Proof. Clearly, f is a homomorphism and the sequence {f,(z)} is bounded. By
Theorem 1, the sequence {f,} is equicontinuous. Let V' be any neighbourhood of 0 in
Y. Then there exist a closed neighbourhood V{; C V' and a neighbourhood U of 0 in X
such that f,(U) CVy (n=1,2,...). Now, for any x € U,

flz) = lim fu(x) € Vo=V

and so f(U) C V; that is, f is continuous. m

For X, as in Theorem 1, let M C X* be w*-bounded (i.e., sup{|f(z)|: f € M} < 00
for every x € X). Then M is pointwise bounded in X* and so bounded by Theorem 1.

In the same way, some other results purely dependent on the classical uniform
boundedness principle can be adopted from [11], [26], and [30] in this general setting.

As another application of Theorem A, we indicate how the Banach-Steinhaus the-
orem on condensation of singularities ([27], Corollary 3, p. 121) may be derived from
it.

Theorem 3 Let {U,,, : n,m = 1,2,...} be a double sequence of bounded linear
transformations of a Banach space X into a Banach space Y such that for each
m = 1,2,...,limsup ||U, .| = +oo. Then there is a set S of the second category

in X such that, for each x in S and each m = 1,2, ..., imsup |Upm(x)| = +o0.

Proof. For each positive integer m, n define p,, () = | Upm(z)|| (z € X). It is easy
to see that each p,, ., is a continuous sub-additive functional on X. For each positive
integer m, define

Zm={2€X: ligln SUp Pnm(2) = 00}

and -
Z =) Zn
m=1
The condition limsup ||U,, || = +oo implies that, for each m = 1,2, ..., lim sup(sup pnm(z)) =

zelU

+oo for each neighbourhood U of 0 in X, and therefore by Theorem A (with x,, =0
for all positive integers n), Z,, is a residual Gs-set. It follows that Z is a residual
Gs-set. Since X is a Banach space, therefore Z = {z € X : limsup ||U,m(2)|| = +o0

for m =1,2,...} is of second category and is the desired set S. m

A locally convex space in which a norm is available, is said to have the property
(N). For example, a normed space and the space (X*, w*)* where X is a locally convex
space have the property (V).

In the remainder of this section it is assumed that X is a complete locally convex
space with the property (V).

We need the following pair of lemmas:

Lemma 4 The following statements are equivalent for a subset A of X:

(a) A is norming for X*



(b) co(£A) is norming for X*
(c) there exits a § > 0 such that co(£A) D IBx.

Proof. The only non-trivial implication is (a) = (c).

Assume that ¢o(£A) C §Bx for all 6 > 0. Consider a sequence {z,} in X \ ¢o(A)
converging to 0. For each n,z, ¢ ¢o(+A), an absolutely convex subset of X, so by
Proposition 2.1 (see also Theorem 4.25 in [11]) there exists x} € X* such that

| (zn)] > sup |z (a)] = sup |7 (a)].
a€co(tA) acA

Now using (a), we may obtain a § > 0 satisfying

|z (z)| > inf suplz)(a)| > 4.
THESX* g A
Plainly the choice of {z,} implies that |z}(x,)| < ¢ for all § > 0 and n > ny. This
contradiction proves the result m
The following analogous result for the dual space X* is easy to verify.

Lemma 5 The following statements are equivalent for a subset B of X*:
(a) B is norming for X
(b) co(£B) is norming for X
(c) there exists a § > 0 such that c0” (£B) D 6 Bx-~.

Lemma 6 If A is a subset of the second category in X, then A is thick.

Proof. Let {A;} be an increasing sequence with A = U A;. As Ais of second category,
i=1

some A, contains a ball S,.(x). Hence, it follows that S,.(0) C @o(£A,,). This implies,
by Lemma 4 (with 6 = 1), A,, is norming. Since {A;} is arbitrary, therefore A must
be thick. m

The classical uniform boundedness principle holds beyond sets of the second cat-
egory; this is the case with the set S of characteristic functions in the unit sphere of
the function space B(A) where A is a o-algebra of sets (cf. [6]). Note that S is merely
nowhere dense. We continue this theme and generalize Theorems 1 and 2 and Propo-
sition 2.2 of Nygaard [23] in the sense that the domain of transformations is a thick set
in X and its dual space X*. Our methods are based on those used by Nygaard [22-23].

Theorem 7 Let A be a thick subset of X. Suppose thatY is a Hausdorff locally convez
space and {f,} a sequence of continuous linear transformations of X intoY such that
{fn(x)} is bounded for each x € A. Then the sequence {f,} is equicontinuous.



Proof. Suppose that {f,} is pointwise bounded on A, that is, sup p(f.(x)) < oo for
allz € Aand eachp € P. Put A4,, = {x € A :sup, p(fn(x)) < m for each p € P}. The

sequence {A,,} of sets is increasing with A = U A;. As A is thick, some Ay is norming.

i=1
Thus, by Lemma 4, there exists a ¢ > 0 such that §Bx C ¢o(+Ay). This together with
the definition of A,, implies that dp(f,) = sup p(fu(z)) <  sup p(fa(x)) < k.

TE€/Sx x€eo(+Ay)

k
Hence, supp(f,) < 5 <ooas desired. m

Remark 8 Theorem 7 extends Proposition 2.2 of Nygaard [23].

Theorem 9 Let B be a thick subset of X*. Suppose thatY is a Hausdorff locally con-
vex space and { [} a sequence of continuous linear transformations of X* into Y* such
that {f(x*)} is bounded for each x* in B. Then the sequence {f*} is equicontinuous.

Proof. Follows pattern of the proof of Theorem 7; the only difference is that we
consider
A ={2" € B:supq*(f,(z")) <m for each ¢" € Q"}

and use Lemma 5 and the w*-continuity of f;. m
The proofs of the following corollaries follow pattern of the proof of Theorem 2 and
so will be omitted.

Corollary 10 Let X, A andY be as in Theorem 7 and { f,} be a sequence of continuous
linear transformations of X into Y such that f(z) = lim f,(x) for each x € X. Then

f is a continuous linear transformation of X into Y.

Corollary 11 Let X*, B and Y* be as in Theorem 9 and {f}} be a sequence of con-
tinuous linear transformations of X* into Y* such that f*(z*) = lim f(x*) exists for

each x* € X*. Then f* is a continuous linear transformation of X* into Y*.

We now establish the Nikodym boundedness theorem in more general settings in
relation to the domain, range and nature of mappings.

Theorem 1 due to Drewnoski [7] is proved in the context of a quasi-normed group;
we observe that his proof can be readily modified to the case of any commutative
Hausdorff topological group G to obtain a principle of equicontinuity type result for
group measures as follows:

Theorem 12 Let M be a family of exhaustive G-valued measures on a o-ring R such
that for each E € R, {u(E) : u € M} is a bounded subset of G. Then {u(F) : E €
R, € M} is a bounded subset of G.

The assumption that R is a o-ring is essential in the above theorem (see [7], Ex-
ample, p. 117).



Valuable contributions have been made in special but very important field of sub-
measures with values in a commutative ¢-group (see [2] and [17] and the references
therein). In the next result, we prove Theorem 12 for group-valued submeasures to get
the following principle of equicontinuity which generalizes Theorem 1 of Drewnowski
[7].

Theorem 13 Let (G,q) be an (-quasi-normed group and M be a family of G-valued
submeasures on a o-ring R such that

sup q(u(E)) < +o0
neM

for each E in R. Then sup q(u(E)) < +o0.

pneM

EER
Proof. Let H be the group of all G-valued mappings on M. Clearly, H is a commu-
tative partially ordered group, the order being f < g if and only if f(u) < g(u) for all
i € M. Define the functional ¢ on H by

¢(f) = sup q(f(n)).

neM

Note that ¢ is an extended real-valued quasi-norm on H with ¢(f) < ¢(g) for
0 < f < g. Define a mapping v : R — H by

Clearly, v is an H-valued submeasure on R.
Suppose not; then with the above notation, sup ¢(v(E)) = +oo. Thus, for each
EER

positive integer n, there exists a set E, in R such that ¢(v(E,)) > n. Let E =
o

U E,. Now E € R and ¢(v(E)) = +oo. This implies that sup ¢(u(EF)) = 400, which
n=1 ®

contradicts the hypothesis. Hence, sup q(u(F)) is finite. m

neEM
EeR

Finally, every o-algebra of sets on a finite set S is a topology but not conversely.
Thus, the result to follow extends the domain of maps in ([6], Corollary 2, p. 16) and
Proposition 2.1 [23], simultaneously.

Theorem 14 Let A be a thick subset of X. If {f.} is a sequence of continuous linear
functionals on X such that {f,(x)} is bounded for each x in A, then the sequence {f,}
1S equicontinuous.

Proof. Take Y as the space of scalars in the proof of Theorem 7. m
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