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Abstract

In this paper a family of estimators for estimating mean, ratio and
product of two means of a finite population has been suggested and studied
under the two different situations of random non-response considered by
Tracy and Osahan (1994), Singh and Joarder (1998) and Singh, Joarder
and Tracy (2000). Asymptotic expressions of biases and mean squared
errors of the proposed families have been derived. Optimum conditions
have been obtained under which the proposed families of estimators have
the minimum mean squared error (MSE). Further the optimum values
(depending upon population parameters) when replaced by sample values
yield the estimators having the minimum MSE of the optimum estimators.
The estimators for MSE’s of the suggested families are also given.
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1 Introduction

In sample surveys it is common to make use of auxiliary information to in-
crease the precision of the estimates of population parameters. The problem of
estimating the ratio and product of two means of a finite population using infor-
mation on single (or more) auxiliary variables has been discussed among others,
by Singh (1965, 1967), Rao and Pereira (1968), Shah and Shah (1978), Tripathi
(1980), Ray and Singh (1985), Upadhyaya and Singh (1985), Upadhyaya et. al.
(1985), Singh (1986a, 1986b, 1988), Srivastava et al. (1989) and Singh et al.
(1994a, 1994b). Let y;(i = 0,1) be the study characters with population mean
Y;(i = 0,1) and y, be the auxiliary character (correlated with study characters
y;(i = 0,1) with known population mean Y5. Assume that a simple random sam-
ple of size n is drawn without replacement and (yo;, yii, y2:),2 = 1,2,...,n are
observed. The usual estimator of ratio R,y = Yo/Y*(Y1 # 0) is defined by

Ry = g—i (h #0) (1.1)

1

where « is a scalar which takes value 0,1 and -1. It is to be mentioned that:

~

(i) for @ =0, Ro) — R = Yy and its estimator R(a) — Ro) = o,

A

(ii) for a =1, Ry — Ry = Yo/Y1 and its estimator Ry — Ry = Go/7 = R,

A

(iii) f?r a=—1,Rq — Ry = Y,Y; and its estimator ]%(a) — Ry = Yoij1 =
P.

Utilizing the information on an auxiliary character ys, a class of estimators
for R, on the basis of Srivastava (1971) is defined by

A

R(o) = Riah(u) (1.2)

where h(u) is a function of u = 7,/Y5 such that h(1) = 1 and satisfies certain
regularity conditions as mentioned in Srivastava (1971). Motivated by Srivastava
(1980), we propose a wider class of estimators for R, as

R(Y) = H(Ra),u) (1.3)

where H(R(,u) is a function of (}?(a), u) such that H(R(a), 1) = R(), H1(R(a),1) =
1 and satisfies certain conditions as given in Srivastava (1980).

Assuming the population mean Y, and variance S2 of the auxiliary character
Y2 to be known and following the same approach as adopted by Srivastava and



Jhajj (1981) and Upadhyaya and Singh (1985), a family of estimators of R,y is
defined by
R = Rioyt(u, ) (1.4)

where t(u,v) is a function of (u,v) such that ¢(1,1) = 1 and satisfies certain
regularity conditions as defined in the Appendix. For a = 1, E)Efx)) reduces to
Upadhyaya and Singh (1985) estimator of ratio Ry = R given by

= Rit(u,v) (1.5)

while for @ = 0, it reduces to Srivastava and Jhajj (1981) estimator of population

mean }70
Rig) = fiot(u, v) (1.6)

To the first degree of approximation, the biases and MSE’s of Réh)) and Rgt) are

e «)

respectively given by

B (REZD ~B (R(a)) n (@) C2 2K (1) + by (1)} (L7)

, R OR
B (REZ%) =B <R(a)) + <%> [QK(Q)C§t1<1, 1) + 2d(a)t2<1, 1)
+C3t11(1,1) 4 2X003C5t12(1, 1) 4+ (Agos — 1)t22(1,1)] (1.8)

MSE (R

( )> — MSE (1%) +OR%, C2hi (1) {1 (1) + 2K )} (1.9)

and
H(t) ) _ 5 2 2,2 2
MSE (R(a)> — MSE (R@) +OR?%,) [C33(1,1) + (ooa — 1) £3(1, 1)

+2X0003C5t1 (1, 1)to(1,1) + QK(O[)Cgtl(l, 1) + 2d()t2(1, 1)} (1.10)

where the bias and MSE of }?(a), to the first degree of approximation, are respec-
tively given by

B (ﬁ(a)) — 0C2R o) (/2)[or — 2Ky + 1] and MSE (R(a)) — OR?, Ay (1.11)

The MSE (R(h’

(a)> and MSE (R%) at (1.9) and (1.10) are respectively mini-

mized for

hi(1) = Koy and (1,1) = A, t5(1,1) = B. (1.12)
Putting (1.12) in (1.9) and (1.10) yield the min MSEs of R{,) and R, as

min.MSFE <]:2(h)

() = MSE (Ri)) = 0RE K2, C3 (1.13)



and

~

min MSE (B)) = MSE (R) — 0R%, Ba). (1.14)

(a)

Thus we have established the following theorems:

Theorem 1.1 Up to terms of order n™!,

H(h) > 2 2 2
MSE () = MSE (Ruw) - 0B, K2, C5

with equality holding if hy(1) = —K(q).

Theorem 1.2. Up to terms of order n!,

with equality holding if #1(1,1) = A and #5(1,1) = B.

Any parametric function ¢(u,v) satisfying the regularity conditions can gen-
erate an asymptotically acceptable estimator. The following estimators:

doy = Riayu™ v, dozy = Ry {1 + an(u— 1)} /{1 + az(v — 1)},

~

do(g) = R(a) []. — al(u — 1) — O{Q(U — 1)]_1 s

dogay = Rioy [1 — ar(u — 1) — ag(v — 1)] ,dosy = Ji’(a) (2 —u*v*?), and doe) =
I:B(a) la1u + (1 — oq)v*2] ete. of the parameter R, are members of the family
of estimators REQ), where aq and «s are real constants. The optimum values of
the constants a; and ay are obtained by the right hand sides of (1.12) and the
resulting estimators will have the same minimum MSE given by (1.14). Further
we note that the class of estimators }A%Eg) does not include the simple difference-

type estimator
do(ry = Ra) + ar(u— 1) + az(v —1). (1.15)

This led authors to propose a class of estimators wider than Ii’&)) in (1.4), as
A (T .
B =T (R, u.v) (1.16)

where T (R(a), u, U) is a function of (R(a), u, v) such that T'(D) = R, T1(D) =
1 and satisfies certain regularity conditions as defined in the Appendix. To the
first degree of approximation, the biases and MSEs of Rgf)) and ]:Zg)) are respec-
tively given by

X : o
B(R() =B (Rw) + (g) 3 [Has (Ra) = 1) + 2R(e) K () Hh (Ria), 1)]
(1.17)



. . 0

+ 2R(a)d(a)T13(D) —f- 2/\00302T23(D)} (118)

MSE (B{)) = MSE (Ra)) + 0C3Hy (Riey, 1,1) [Hz (Rioy1,1) + 2R K (o)
(1.19)
and

MSE (R T>) — MSE (1% ) +0 [C2T2(D) + (Aoos — 1) TZ(D)

(a)
+ QR(Q)K C2T2< ) QR(a)d(a)Tg(D) + /\00302T2(D>T3<D)(}1.20)

The MSE (Rgf))) and MSE (Rg))) in (1.19) and (1.20) respectively are mini-
mized for

Hy (R, 1) = =Ry K(a) (1.21)

and
Ty(D) = R A, T5(D) = Ro)B (1.22)

Putting (1.21) and (1.22) respectively in (1.19) and (1.20), we get the minimum

MSEs of ]%E(Ij)) and Rg)) as

(

min.MSE (Rff) — MSE (}?z(a)) — 0R?,\C2K?,) = min.MSE (Rgg) (1.23)

and

minMSE (R(})) = MSE () = 0R%, Bl = min MSE (R{)) . (1.24)

Thus it is proved that the asymptotic MSE for an optimum estimator of the
family generated by R(T) ]—?E ))> is same as the asymptotic MSE of an optimum

estimator of the family E’Ea) <lf€( )

(a)) and is not further reduced.

From (1.11), (1.23) and (1.24), we have

MSE (i) — [min MSE (R()) = min. MSE (R[] = 082, C3K2, > 0
(1.125)
and

)> = min. MSE (Rgf)))}
-

— [min MSE (REQ) (o)
A2
— 0 2
R TN >0



(1.26)

Thus from (1.25) and (1.26) we state the following theorem:

Theorem 1.3. The inequality

< [min.MSE (Rgé))s — min MSE (£())| < MSE (R

a)

[min.MSE (R(;)) =min.MSFE ( AEQ)]

holds good at the optimum conditions.

It follows from Theorem 1.3 that the proposed family of estimators R&)) (Rg)) )

is more efficient than the estimators R(a), REZ)) and ]:Zgg)) It is to be mentioned

that REZ)) is a member of the class ]:252) The estimator ]A%g)) includes all the es-

timators the ]%(a), REZ)), Réf)) and 1:28;)) The biases and MSEs of the estimators

dog),% = 1 to 6 can be obtained from (1.8) and (1.10) just by putting the values

of the derivatives as shown in scheme 1.1.

’ Scheme 1.1 Values of the derivatives. ‘

Estimator | t;(1.1) | t2(1,1) t11(1,1) t12(1,1) t92(1,1)
do(1) o Q9 ap (ag — 1) o0 ag (g — 1)
do(2) o —Qy 0 — Qg 2005
do(g) (05} (6] 20[% 2(110[2 206%
d0(4) —Q — Q9 0 0 0
d0(5) —Q7 — Q9 —Q (a1 — 1) — (109 —Q9 (042 — 1)
do() a; | ax(1—aq) 0 0 az (1 —aq) (ag — 1)

In this paper, we have studied the effect of random non-response on the family
of estimators }%EZ)), }%Ef)), f%gta)) and Rg)) in two situations advocated by Tracy and
Osahan (1994): (i) non-response in the study as well as the auxiliary variables
[Situation 1 ], and (ii) non-response in the study variable only [Situation 2]. The
reader is referred to Singh and Joarder (1998), Singh and Singh (1979), Singh
and Singh (1985), Singh, Joarder and Tracy (2000) and Singh and Tracy (2001).

2 A Nonresponse Probability Model

Let © : (vq,vg,...,vy) denote the population of N units from which a simple
random sample of size n is drawn without replacement. If r(r =0, 1,2,..., (n—2))
denotes the number of sampling units on which information could not be obtained



due to random non-response, then the remaining (n — r) units in the sample can
be treated as simple random sampling without replacement (SRSWOR) sample
from Q. It is assumed that r is less than (n—1). We also assume that if p denotes
the probability of non-response among the (n—2) possible values of non-response,
then r has the following discrete distribution as:

P(r) = —7(1’; . ;; Cr2 g (2.1)
which is due to Singh and Joarder (1998), where ¢ = 1—pandr =0,1,2,...,(n—

2). Let us define

_ _ _ 2
Yo(n—r) _ Yi(n—-n) _ Y2(n—-1) Y2 SQ(nf'r)
Yo _1761_ Y1 , €2 = Y, _1763_3—/;_1764 52 _17

€y —

52
and es = o5 — L.
2

incompleteness- in the form of missingness- is a trouble some feature of many
data sets. Statisticians have identified for sometime that failure to account for the
stochastic nature of incompleteness can damage the actual conclusion. An obvi-
ous problem arises what one needs to justify ignoring the incomplete mechanism.
Rubin (1976) advocated three concepts: missing at random (MAR), observed at
random (OAR), and parameter distribution (PD). Rubin defined, “The data are
MAR if the probability of the observed missingness pattern, given the observed
and unobserved data, does not depend on the value of the unobserved data”.
Heitjan and Basu (1996) have distinguished the meaning of missing at random
(MAR) and missing completely at random (MCAR) in a very nice manner. The
probability model defined at (2.1) is free from actual data values, hence can be
considered as a model suitable for MAR situation. Then under the probability
model given in (2.1), we have the following results:

E(e;)) =0,i=0,1,...5;

E(eg) = 9*0027 E(‘e%) = 9*0127 E(e%) = 9*0227 E(e%) = 9C227 E(ei)
=0"(Mooa — 1), E(e2) =0 owo— 1), FE(eper) = 0"pnCoCyi, FE(epes)

= 0" po2CoC, E(eoes) = 0p2CyCo, E(€0€4) = 0" A102C0, E(60€5) = 0 A102C0,
E(ejes) = 0% p12C1Cy,  E(ejes) = 0p1oC1Csy,  E(erey) = 0*X012C1,  E(eqes)

= OX\102C1, E(eze3) = 0C2,  E(eseq) = 0" Xgo3Ca,  E(eges) = OAg3C2,  E(esey)
= 0Xo03C2, FE(eses) = 0Ago3Cy and E(eqes) = 0(Agoa — 1).

It is to be noted that if p = 0, that is, there is no non-response, the above
expected values coincide with usual results. For practical examples of random
non-response in survey sampling, the reader is referred to Tracy and Osahan
(1994) and Toutenburg and Srivastava (1998).



3 Proposed Strategies

In this section, we consider three different strategies depending upon the avail-

ability of information and non-response on both variables.

3.1 Strategy I

When random non-response for r units on study variables o, y; and auxiliary
variable ys is present in the sample, and population mean Y and variance S2 are
known, we define a family of estimators of R, as:

~

dl = Ra(nfr)f(u(nfr)a U(nfr)) (31)

where f(ugm—r)Vn-r)) is a function of (u(,—r), v(m—r)) such that f(1,1) =1 and it
satisfies the following conditions:

(i) Whatever be the sample chosen, (t(n—y), V(n—r)) assumes values in a bounded,
closed convex subset, S, of the two-dimensional real space containing the
point (1,1).

(i) In S, the function f(u@m—r), Vn—r)) is continuous and bounded.

(iii) The first and second order partial derivatives of f(u(m—p), Vn—r)) exist and

are continuous and bounded in S.

The bias and MSE of d; to the first degree of approximation, are respectively
given by

. 0" Ro
B(dh) = Blfuo) + (5 ) PR wCAQL D) + 2 o1 1) + G (1,1

+2X003C2 f12(1, 1) 4+ (Agos — 1) f22(1, 1)] (3.2)
and
MSE(d) = MSE(Ran-r)) + 0" R,y [C3f2(1,1) + (Aooa — 1) f5(1,1)
+2X0003C2f1(1,1) fo(1,1) + QK(O[)Cgfl(l, 1)+ 2d(a)f2(1, 1)] (3.3)
where
> * 06012
B(Ra(n—r)) =0 R(a) T (O[ — 2Ko1 + ]-) (34)
and

MSE(Ram-r) = 0" R [Ch + aCF(a — 2Ko1)] (3.5)



are the bias and MSE of Ra(n,r) to the first degree of approximation, respectively.
The optimum values of f1(1,1) and f3(1,1) for which MSE(d;) is minimum, are
given by

f1(1,1) = A and f»(1,1) = B (3.6)

Substitution of (3.6) in (3.3) yields the minimum MSE of d; as
min.MSE(di) = MSE(Ra(n-r) — 0" R}, Ba). (3.7)
Thus we state the following theorem.

Theorem 3.1. Up to terms of order n~!

MSE(d) > MSE(Ran-+)) — 0" R,y By

with equality holding if f1(1,1) = A and f»(1,1) = B.

A family of estimators wider than d; is defined by
d2 = F(Ra(n—r)7 U(n—r), U(n—'r))

where the function F(.ﬁia(n_r), U(n—r); Vn—r)) Satisfies F(D) = R,y and Fy (D) = 1.

To the first degree of approximation the bias and MSE of d, are respectively

given by
. f*
B(dz) = B(Rau-n) + (3) [C3F2(D) + (ooa — 1) Fa3(D)
+2R (4 K () Fia(D) 2R(ayd) Fis(D) + 20003CaFosD]  (3:9)
and

MSE(dy) = MSE(Ruygn-r)) + 0" [C3FZ(D) + (Aoos — 1) FZ(D) + 2R o) K (o) C3
Fi2(D) 4 2R(a)d(a) Fi3(D) + 2X003C2F3(D)] . (3.10)

The MSE(dsy) is minimized for
F5(D) = Rio)A = A” (say) and F3(D) = R B = B" (say) (3.11)
Thus the minimum MSE of ds is given by
MSE(ds) = MSE(Ra(n-r) — 0" R, B(a) = min .MSE(d; ) (3.12)

It follows from (3.12) that to the first degree of approximation, the minimum
MSE of ds is equal to that of d;(i.e. min .MSE(ds) = min.MSE(d;)) and is not

reduced.
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Further we note that the estimators of the type

A

Y n—r + n—r) 1
d2(1) = Ra(n—r) + oy (U(n_r) — 1) ’d2(2) — Yo(n—r) T Q1 (U( ) )

gl(n—r) + g (u(n—'r) - 1)

are members of the family dy but not of dy, where «;,i = 1,2 are real constants.

Remark 3.1. The following families of estimators of R, :
di) = }?a(n_r)f (wn-r)) (only Y of yois known) (3.13)

and
dy(2) = Ra(n_r)f (Vin—r)) , (only S3 of y,is known) (3.14)

are members of the family d;, where f(u¢,—)) and f(vg—,y are the functions of
U(n—r) a0d V() respectively such that f(1) = 1. The bias of dy(1) and dy(2) can be
obtained from (3.2) just by putting [f1(1,1) = f1(1), fu(1,1) = fia (1), fa(1,1)
= fi2(1,1) = foe(1,1) = 0] and [fo(1,1) = fo(1), fa2(1,1) = fao(1), and f1(1,1)
= f12(1,1) = f11(1,1) = 0] . The MSEs of dy(1) and dy(2) can be obtained from
(3:3) by putting [A1(1,1) = (1), fo(1) = 1] and [fo(1,1) = fo(1), fi(1) = 1]
The MSEs of dy(1y and dy (o) are respectively minimied for

fi(l) = =K (3.15)
and
f2(1) = —d(ay/(Aooa — 1) (3.16)
which give the minimum MSEs of d(1) and d; (2 respectively as
min MSE (dy1)) = MSE <Ra(n_r)) — 0°R2,C3K?, (3.17)
and
min MSE (dy(2)) = MSE (sza(n,r)> — 0" R/ (hoos — 1), (3.18)

Remark 3.2. The following families of estimators of R, :

A

dg(g) =F (Ra(n_,,), U(n_r)> s (only Yg Ofy2 is knOWH) (3.19)
and

doay = F (ﬁ’a(n_r), v(n_r)> , (only S3 of yo is known) (3.20)
where F <}?a(n_r),u(n_r)) , and F (fia(n_r),v(n_r)) are the functions of

(]%a(n_r),u(n_r)> and <Ra(n_r),v(n_T)> such that F'(R,1) = R, and
Fi (R, 1) = 1.
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The biass of dy(3) and day can be obtained from (3.9) by putting
[Fya(D) = Fay (Riay, 1), Fia(D) = Fia (Riay, 1), Fia(D) = Fys(D) = Fs(D) = 0]
and [Fi3(D) = Fs3 (R, 1) , Fi3(D) = Fi3 (R(a), 1), Faz(D) = Fi5(D) = Fy3(D) = 0]
respectively. The MSEs of dy(3) and da4y can be obtained from (3.10) by putting
[F2(D) = F» (Ra), 1) F5(D) = 0] and [F3(D) = F3 (R), 1) , F2(D) = 0] respec-
tively. The MSEs of dy(3) and dy(4) are respectively minimized for

F5 (R, 1) = =R Ko (3.21)

and

F3 (Ray, 1) = —Rayda/(Xoos — 1). (3.22)

Thus the resulting minimum MSEs of dy3) and dyy are respectively given by
min MSE (di1)) = min MSE (dag)) = MSE (R ) — 0" B2, C3K2, (3.23)
and

min .MSE (dy(2)) = min .MSE (dy4)) = MSE (Ra(w)> —0" Ry 7y d7 / (Moos—1).
(3.24)

Now we state the following corollary:

Corollary 3.1. Up to terms of order n!,

(i) MSE (dy) o dagz)) = [MSE (Raur) ) — 0" 2, C3KE, |
with equality holding if fi(1) = —K(a) for dy(1), and if F, (R(a), 1)
= —R(Q)K(a) for d2(3).

(ii) MSE (digz) or dagn)) = [MSE (Ragnr ) = 0 B2, 2, /(oos = 1))
with equality holding if f2(1) = d(a)/(Aoos — 1), and if F3 (R4, 1)
= —Ra)d(a)/(Mooa — 1) for dy).

Remark 3.3. It is to be mentioned here that all the families of estimators
di, di(1), di(2), da3y and dy) are the members of the family do. The biases and
MSEs of these estimators can be obtained from (3.9) and (3.10) respectively by
putting the suitable values of the derivatives as per scheme 3.1:
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’ Scheme 3.1 Values of the derivatives ‘

Estimator FQ(D) Fg(D) Flg(D) Flg(D)
d; Ry f1(1,1) | Riayfa(1,1) fi(1,1) fa(1,1)
di(1) R f1(1) 0 1(1) 0
dy2) 0 R f2(1) 0 fo(1)
days) B3 (R, (1) 0 fr2(Ra), (1) 0
0 0 F3(R(a), 1) 0 Fi3(Ra), (1)
Estimator Fy (D) Fy3(D) F33(D)
dy Ry fu(1,1) | Ry f12(1, 1) | Ry foa(1,1)
dl(l) R(a)fn(l) 0 0
dy(2) 0 0 Ra) f22(1)
dz(g) FQQ(R(Q), 1) 0 0
daa) 0 0 Fa3(Ra), 1)

Remark 3.4. If we set @ = 0 in (3.1), (3.8), we get the families of estimators of

population mean Y; as

1 _
dg ) = yO(nfr)f (u(nfr)a /U(nfr)) (325)

and
1 _
dg ) =F (yO(nfr)a U(n—r), U(nfr)) (326)

where f (u(n,r),v(n,T)) and F (yo(n,r),u(n,T),v(n,r)) are the functions of
(u(n_r), v(n_r)) and (go(n_r),u(n_T),v(n_r)) respectively such that f(1,1) =1 and
F(Dy) = Yy implies that F(Dy) = 1. The biases and MSEs of dgl) and dgl) can be
obtained from ((3.2, (3.3)) and ((3.9), (3.10)) respectively by putting o = 0. The
optimum values of (f1(1,1), f2(1,1)) and F»(Dy), F3(Dy)) for which the MSEs
of dgl) and dg) are minimum, and the minimum MSEs of dgl) and dg) can be
obtained from ((3.6), (3.11)) and ((3.7, (3.12)) respectively by putting a = 0.

The common min.MSE of dgl) and dgl) is

min .MSE (d§”) — min .MSE (ng) = 0"S2[1 — p2 — (Mosspoz — Mioz)? /4] .
(3.27)
Thus putting @ = 0 in the theorem 3.1, we get the following corollaries:

Corollary 3.2. Upto terms of order n™!,

(i) MSE (dg1)> > 9*58 [1 - ng - <)‘003p02—>\102>2 /A]
with equality holding if fi(1,1) = Ay; and f3(1,1) = By,

(i) MSE <d(21)> > 6053 [1 — pgy — (Aoospoz — Ao2)? /O]
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with equality holding if Fy(Dy) = YpA; and F3(Dy) = Yy By, where A;; and By,
can be derived from A and B respectively by putting o = 0.

Remark 3.5. The following classes of estimators of population mean Yj :

d! = Yo(n U(n—r) , (only Y5 of y5 is known), 3.28
1(1) (

dloy = = Yotn-nf (Vin , (only S5 of i is known), 3.29
1(2) 2

dé(l) =F (gjo(n_r), u(n_T)) , (only Y3 of 7 is known), (3.30)

dé(m = F (Jo(n—r)> Un—r)) , (only S5 of yo is known), (3.31)

where f ( ) f (U(n T)) F (go(n_r),u(n_r)) and F (go(n_r),v(n_r)) are the func-
tions of w(,—p), V(n—r), and (go(n_r),u(n_r)) and (gjo(n_r),v(n_r)) respectively such
that f(1) = 1 and F (Yo,l) = Y, which implies that F} (Yb, 1) = 1. It is to be
noted that (i) dj,) and dj,, and (i) dj,) and dy,, are the members of d; and
ds respectively. Thus the biases and MSEs of these estimators can be obained
from (3.9) and (3.10) respectively by putting o = 0 and the suitable values of

the derivations from in scheme 3.2.

’ Scheme 3.2 Values of the derivatives. ‘

Estimator | F,(D) F3(D) Fi2(D) Fi3(D)
VALY | Yof(LD | AQD) | AL
d" Fy(Do) | F3(Do) | Fia(Dy) | Fis(Dy)
di, Yo fi(1) 0 f(1) 0
dil(é) 0 Yo f2(1) 0 f2(1)
dgl()u Fy(Yp,1) 0 Fi5(Y,, 1) 0
iy 0 Fy(Yo, 1) 0 Fi3(Yo, 1)

Estimator FQQ(D) FQg(D) F33(D)

d\" Yofu(1,1) | Yofia(1,1) | Yofas(1,1)
dy” Fp(Do) | Fos(Dy) | Fia(Do)
diy, | Yof(D) 0 0
diy 0 0 Yofa(1)
dél()l) F (Y5, 1) 0 0
dyy 0 0 Fi3(Yo, 1)

The optimum values of the derivatives for which the MSEs of d d(l) X d;l), and d2 @)
are minimum and the minimum MSEs of these estimators can be obtamed from



14

(3.15), (3.16), (3.17), (3,18), (3.21), (3.22), (3.23), and (3.24) just by putting

a = 0. The minimum MSEs of dgt)l), d%), d;l()l), and dél(;) are respectively given
by

min .MSE (d(l)

1(1)) — min .MSE (d;ﬂ)) — 0752 (1— pdy) (3.32)

and
min .MSE (dgg)) — min .MSE (d;g)) — 0752 (1= M0/ (hoos — 1)) . (3.33)
Thus we state the following corollary by putting a = 0 in corollary 3.1.

Corollary 3.3. Up to terms of order n*

() MSE (diy) or dig)) > 0°53 (1~ ¢fy)
with equality holding if f1(1) = — Koy for di,, and if Fy(Yy, 1) = —Yo Koy

for dél()l).

(ii) MSE <d§1()2) or déié)) > 0°5§ (1 — Moz/(Aoos — 1))
with equality holding if fo(1) = —A102C0/(Agosa — 1) for d%)a
and if F3(Yp, 1) = —YoA102Co/(Aoos — 1) for d;)z)-

It is to be noted that the estimator
(1) _ Y,
dg(g) = Yo(n—r) — a1Ys (u(n—r)_)

suggested by Singh, Joarder and Tracy (2000) is a particular member of the
family d;)l) but not of dﬁ)l), where a4 is a constant. The minimum MSE of dél(;)
is the same as given by (3.32).

3.1.1 Estimators with Estimated Optimum Values

It is to be noted that the optimum values of the parameters involved in estima-
tors depend on unknown population parameters such as Agosz, Aoos, A102, Ao12, Co,
Ko1, Koa, ... etc. to use such an estimator one has to use guessed values or es-
timated values of these parameters. Guessed values of population parameters
can be obtained from either past data or experience. If the guessed values are
not known then it is advisable to use sample data at hand to estimate these
parameters. The estimated optimum values of fi(1,1) and f5(1,1) are given by

fi(1,1)=A and  fy(1,1) = B. (3.34)
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In case of estimated optimum values we find the MSE as: From the regularity
conditions, defined in the Appendix, for d; we desire a function f (u(n,r), v(n,r))
such that f(1,1) = 1, fi(1,1) = A, fo(1,1) = B, which indicates that the
function f (u(n_r),v(n_r)) will contain not only u(,—y), V(n—r) but A and B as
well, and thus we need a function f* (U(n_r),v(n_r),A, B) such that f*(Z) =
L, f1(Z) = A, f3(Z) = B. Since in such function f* (wm—y), V(n_r), 4, B) so re-
quired, A and B are unknown, thus we may take f** < —r) Uln—r) A B) =
f* <u(n )5 U ,fl B) (replacing A, B by their estimated values). Now f*(Z) =
L f1(2) = A f2( ) =

We may consider
di = Ra(n,r)f* ( U(n—r), V(n— r),A B) (3.35)
0, A, B

as an estimator of R(,). Expanding f* ( (n—r)> ¥ ) about the point Z in

Taylor’s series, we have

di = Ra(n—r) [1 + (u(n—r)—l) ff(Z> + (U(n—r) - 1) f2*(Z>
+ (A= A)[2) + (B-B)fi(2)+.. ]

Then in terms of e;’s, we have

dy — R(a) = R, [eg — aey + ea A+ esB + (eg — ey )es A + (eg — ey )es B

A= AR@)+(B-Bf2)+. ], (8:36)
Squaring both sides of (3.36) and taking expectation, we have the MSE of df be
equal to the minimum MSE of d; in (3.7) if f5(Z) = 0, f;(Z) = 0. Thus if we
consider the family of estimators (depending upon estimated optimum values)

d>(1( = Ra(nfr)f* (lL(n,T), V(n—r), A, B) (337)

such that f*(Z) = 1, f{(Z) = A, f3(Z) = B, f;(Z) = 0 and f;(Z) = 0 such an
estimator df attains the min .MSE(d;) given in (3.7).

Now we state the following theorems, and proofs can also be obtained by
following Randles (1982).

Theorem 3.2. The family of estimators (based on estimated optimum values)
of R () defined by

~

dT = Ra(n—r)f* (u(n—r)a U(n—r), A, B)
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has the MSE, to the first degree of approximation, equal to the minimum MSE
of d; that is

MSE (d?) MSE( o ) — 0°R%, B(a) = min MSE(d,)
where f*( V(n—r) ,A, is a function of (u(n s U n,r),fl, B) such that
[(Z) =1, f1( )=A4A, [5(Z)=B, [f;(Z)=0,and f;(Z)=0.

Theorem 3.3. A wider family of estimators (based on estimated optimum val-
ues) of R, defined by dj = F* <Ra(n,ﬂ, U(n—r)> V(n—r) A B> has the MSE, to
the first degree of approximation, same as the min.MSE of dy given by (3.12) i.e.

MSE (d) = MSE (Ra ) 0" R?, B(a) = min MSE(dy)

where F' (Ra(n,T),u(n,r),v(n,r),/i, B) is a function of <Ra(n,r), U(n—r), V fl B)
such that B (Q%) — Ry FH(@) 2 LES(Q) = A F(Q@") = B\ Fi(Q") —
0 and FZ(Q*) =0.

In similar fashion many other families of estimators of ratio R, based on
estimated optimum values can be derived. Further we state the following theorem:

Theorem 3. 4 Estimators for estimating the minimum MSE of d; ( or d3) or MSE of
dt (ord})), d (or d ) and dgl()l) (or dél()l)) are respectively given by

min .MSE(d;) = min .MSE(dy) = MSE(d%) = MSE (fza(n_r))
_ 2R { 20 7")02 A;(n_r)/ﬁ(nfr)},
min .MSE <d§1 ) — min.MSE (dé”)
H% .2 ) 3 N N 2 A
= 9*30(714) [1 — Po2(n—r) {>\003(n—r)p02(n—7‘) - )\102(n—r)} /A(n—r):| )

and

A

min .MSE <d1(1)> = min.MSE (d(l) ) 0" 8(2)(n—r) (1 — ﬁ(2)2(n—r)) ,

where
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3.2 Strategy II

We consider the situation when information on variables vy and y; cannot be
obtained for r units while population mean Y, and variance S2 of the auxiliary

variable g, are known. We propose the following family of estimators of R, as
dy = Rogn—ryd(u,v) (3.38)

where ¢(u,v) is a function of (u,v) such that ¢(1,1) = 1 and satisfies certain
conditions similar to those for f(-) in d;. Up to terms of order o (n™!), the bias
and MSE of d3 are respectively given by

QR(Q)

B(ds;) = B <Ra(n—r)> + ( ) [2K(0)C361(1,1) 4 2d(a)92(1,1) + C311(1, 1)+

(Moos — 1)2a(1,1) + 2X003C2012(1, 1)] (3.39)

and

MSE(ds) = MSE (Roguor ) + 0R%) [C363(1,1) + (oot — 1) 63(1, 1)

+ 2X003C201 (1, 1)po(1,1) + K(a)022¢1(17 1) + 2d ) $2(1, 1)} ( )
3.40

The bias and MSE of an estimator belonging to the proposed family d3 can be
casily obtained from (3.2) and (3.3) respectively. The MSE of d3 is minimized
for

$1(1,1) = A and ¢»(1,1) = B. (3.41)

Thus the resulting minimum MSE of d3 is given by

min .MSE(ds) = MSE (Ra(n_r)) — OR2, Ba). (3.42)

where MSE (Z%a(n_r)) is given by (3.5). Thus we state the following theorem:

Theorem 3.5. Upto term of order n™!,

MSE(ds) = |MSE (Ragnr ) — ORZ,) B
with equality holding if ¢;(1,1) = Aand ¢»(1,1) = B.
A family of estimators wider than d3 is defined by

dy =2 (]%a(n_r), u, v) (3.43)
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where ¢ <f-ia(n_r),u,v) is a function of (}?a(n_r),u,v) such that ®(D) = R
and ®1(D) = 1. The bias and MSE of dy4 to the first degree of approximation, are
respectively given by

. 0
B(d4) =B <Ra(n77')> + <§> [QR(Q)K(Q)CQZCDQ(D) + 2R(a)d(a)q>13 + 022(1322(13)-1-

+ (Aoos — 1)P33(D) + 2X003C2P23(D)] (3.44)
and
MSE(d,) = MSE (Ra(n_r)) +0 [C202(D) + (Agos — 1)B2(D)
+ 22003C2P2(D)P5(D) + 2R () K(a) C3®2(D) + 2R () d () ®P3(D)] -

(3.45)
The MSE of d4 is minimized for
Dy(D) = Ria)A = A* (say), and @3(D) = R B = B~ (say). (3.46)
and the resulting minimum MSE of d, is given by
min MSE(dy) = |MSE (Rt ) — 0% Ba) - (3.47)

It follows from (3.47) that to the firt degree of approximation, the minimum
MSE of dy is equal to that of d3 (i.e. min.MSE(d,) = min.MSE(ds)) and is not

reduced. The difference type estimator, dyq) = Ram—r) + @1(u — 1) + ao(v — 1),
is a member of the family dy, but not of ds.

Remark 3.6. The following classes of estimators of R, :

dil()l) = Ra(n,r)qﬁ(u), (only Y3 of yois known) (3.48)
dil()Q) = Rapm_no(v), (only S3 of v is known) (3.49)
dfll(;) = (Ra(n_r), u) , (only Y5 of ysis known) (3.50)
df&i) = (Ra(n_,,), v) : (only S3 of y,is known) (3.51)

where ¢(u), ¢(v), ¢ <Ra(n_r), u) and ¢ (ﬁ’a(n_r), v) are the function of

u,v, (Ra(n_,.),> and <Ra(n_r), v) respectively such that ¢(1) = 1 and ¢ (R(a), 1) =
Ry which implies ¢, (R(a), 1) = 1. The biases and MSEs of these classes of es-
timators can be easily obtained from (3.44) and (3.45) respectively for suitable

values of the derivatives.
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Remark 3.7. The following families of estimators of population mean Yj :

dl(l(z)l) = go(n—r)¢(u7v)7 (352)
difyy = @ (ogn-—ryu,v) (3.53)
iy = otn-r)0(u), (3.54)
diyy = Tom-nd(v), (3.55)
dihy = @ (Gom—r), ) (3.56)
and
di%) =@ (Jo(n—r), ) (3.57)

where ¢(u,v), & (go(n_r),u,v) ,o(u), p(v), @ (ﬁo(n_r),u) ,and @ (go (n—r), U ) are
the functions of (u,v), (Qo(n,r),u,v) , (u), (v), (gjo(n,r),u), and (yg (n—r)s ¥ ) such
that ¢(1,1) = 1,¢(1) = 1,® (Yp,1) = Y, which implies that ®; (Yp,1) = 1, and
®(Dy) = Yy which implies ®(Dy) = 1. The biases and mean squared errors of
these estimators can be obtained from (3.44) and (3.45) by putting o« = 0 and
suitable values of derivatives. The minimum MSE of dgg)l) (or dffg)),dgz)g) (or

dff()é)), and dffa) (or dff(%)) respectively are

2
min .MSE <d4(1)> = min .MSE (d4(2)> =052 [ P2, — ()\003p02A A102)

+(0" — 0), (3.58)

min .MSE (di%) — min.MSE <d4(5)) =052 (1—p%) + (0 —0)S2,  (3.59)

and

2
)‘102

min MSE( 4(4)> = min. MSE( pio) > =0S; {1 T Do —1)

} + (6" — 6)S2.
(3.60)

1
)

Theorem 3.6. Upto terms of order n~

- 4 (6 — )82

with equality holding if ¢1(1,1) = Ay; and ¢»(1,1) = By for dgz)l), and if
@Q(Do) = }_/01411 and (I)g(Do) = }_/E)Bll for dgz)z)

2
(i) MSE(d) ordl}) ) > 05 [1 _ gz, — Qoospo = Jioo)
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(i) MSE(d{f} ordi())) = 053 (1= pdy) + (6" — 0)S}

with equality holding if ¢; (1) = — Koy for dif}, and if ®,(¥y, 1) = —KgsYy

for dgg).
(i) MSB(d%) ord %)) > 053 [1 — 2y ] 4 (67 ~0)53 with equality holding if
$2(1) = =X102C0/(Aoos — 1) for dffa), and if ¢3(Yp, 1) = —X102Co Yo/ (Aooa— 1)

for dio) .

(6)

It is to be noted that the estimator

0 _ _
dg(l()’?) = Yo(n—r) — 052Y2(u - 1)

of population mean Yp, suggested by Singh, Joarder and Tracy (2000) is a
: 0 0 0

member of the family di(%) (or di(;)) at (3.56) (or (3.53)) but not of di(g,)) at

(3.54), where ay is a constant. The minimum MSE of di(z;) is the same as

given by (3.59).

3.2.1 Estimators with Estimated Optimum Values

The consistent estimators of optimum values ¢1(1,1) and ¢5(1,1) based on

sample data at hand, are
d1(1,1) = A (say) and ¢y(1,1) = By (say). (3.61)

Thus the resulting family of estimators of R, is defined as

&y = Ron_r)®" (u,v, Ay, By) (3.62)
where ¢*(+) is a function of <u, v, Ay, f?l) such that ¢*(Z) = 1,¢5(Z2) = A, ¢5(2) =
B,¢i(Z) = 0, and ¢5(Z) = 0. It can be shown, to the first degree of approxi-
mation, that MSE(dj) = min .MSE(d3) where min.MSE(ds) is given by (3.42).
Further a family of estimators (based on estimated optimum values) of R ,) wider
than dj is defined by

dj; = o~ (Ra(n,r), u, v, AT, Bf)

where ®* (}?a(n_r), u, v, A’{, Bf) is a function of <-Roc(n—7‘)7 u, v, AT, Bf) such that

O(2") = Ry, ¥1(27) = 1,85(¥) = 5 . A, @3(27) = BT, ®3(27) = 0,
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and ®f(Z*) = 0. It can be proved, to the first degree of approximation, that
MSE(d};) = min.MSE(dy), where min .MSE(dy) is given by (3.47). Similarly
various families of estimators of R, based on estimated optimum values can
be defined. Consistent estimators for estimating the minimum MSEs of various

families are given in the following theorems.

Theorem 3.7. Estimators for estimating the minimum MSE of ds (or MSE of
d3), di(z)l) (or dfg;)), di%) (or dgg))) and di(&) (or di%)) are, respectively, given by
min .MSE(ds) = MSE(d?) = MSE (RQ(WQ

— OR? K205+

a(n—r)

~ ~ ~ ~ 2
(K(*a))\O(BCQ - da(n—r))

\ \2
Aooa — Agos — 1

min .MSE (df;z)l)) — min .MSE (dgz)z)) =

~ ~ 2
(AOOSﬁOQ (n—r) — )\102(n7r)>

\ \2
)\004 - >\003 —1

Xesg(n—r) I ﬁ(z)(n—r) -

s 1\
—— s
n(j+2f) n 0(n—r)>

1 1

2 2 ~92
ng+2p ﬁ) So(n—r) H0S0(n—r) (1- pOZ(nfr))

min MSE (d{fy) ) = min. MSE (d}7)) ) = (

and

~ N 5\2
min .MSE <dg21)> = min .MSE <d£1(2)6)> _ es(z)(n_T) {1 - : 102(n—r) }

Aoos — 1)
+ ! L) ¢
—— s
ng+2p n o(n=r)

3.3 Strategy III

We again consider the situation when information on study variables y, and
y1 cannot be obtained for r units while information on the auxiliary variable o
is obtained for all the sample units. But the population mean Y, and variance
S2 of the auxiliary character y, are not known. Under these circumstances, we
define the following family of estimators of R, as

A

ds = Ran-rya(u®,v") (3.63)
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where a(u*,v*) is a function of u* and v* such that a(1,1) = 1 and satisfies certain
regularity conditions as given in (3.1). To terms of order n~!, the bias and MSE

of d5 are respectively given by

. R,
B(ds) = B (Rau-n) + (0" = )= [Cann(1,1) + (oot — az(1,1)

+ 2 X03Coa12(1, 1) + 2K (0)Caar (1, 1) + 2d(ayaz(1, 1)] (3.64)

and

a(n—r)

+ 2X0003C5a1(1, 1)az(1,1) + 2K (o) Ciai (1, 1) + 2d(gyas(1,1)]  (3.65)

MSE(ds) = MSE (Ra(n_r)) + R, (0" — 0) [C2a2(1,1) + (ooa — 1)a3(1,1)

The MSE(d5) is minimized for
a;(1,1) = A and as(1,1) =B (3.66)
Thus the resulting (minimum) MSE of d5 is given by

min .MSE(ds) = MSE (Ra(n_m) — (6" — 6)R2,) Bay = min MSE(dy) + 6R2, Bo)
(3.67)
where min MSE(d, ) is given in (3.7). Thus we have the following theorem:

Theorem 3.8. Up to terms of order n~!, MSE(d5) > min .MSE(d,) + QR%Q)B(Q)
with equality holding if a;(1,1) = A and a»(1,1) = B.

Further we define a wider family of estimators for R, as

dg = A (Ra(n,r), u”, v*) (3.68)

where A (Zém’a(n_r), u*, v*) is a function of (Z%a(n_r), u*, v*) such that A(D) = Ry
and A;(D) = 1. To the first degree of approximation the bias of MSE of ds are

respectively given by

- 0 —0
B<d6) =B (Ra(n—r)) + ( 9 ) [CSAQQ(D) + ()\004 — 1)A33(D) + 2)\00302A23<D)

+ 2R(a)CQ2K(Oc)A12(D) + 2R(a)d(o¢)A13(D)} (369)

and

MSE(ds) = MSE (Ra(n_r)) + (6" — 0) [C2A2(D) + (Aooa — 1)

A3(D) + 2X003C2A2(D) A3(D) 4 2R () C5 K () A2(D) + QR(a)d(azAfﬂ(l))ﬂ :
3.70
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The MSE(ds) is minimized for
Ay(D) = Rio)A = A" and A3(D) = R B = B”. (3.71)
Thus the resulting minimum MSE of dg is given by
min .MSE(dg) = min .MSE(d5) (3.72)

where min MSE(d;) is given by (3.67). Thus we see that the family of estimators
dg is wider than ds but its minimum MSE is the same as that of d5 and is not
reduced. It is to be noted that the difference type estimator:

de(1y = }?a(n_r) +aj(u' = 1)+ ag(v” — 1)

is a member of dg, but not of ds.

Remark 3.8. The following families of estimators of R,
d\) =R (w);d) = R (v*);dy = A(R 1diy = (ARq(
6(1) — a(n—r)aA\U ); 6(2) — a(n—r)a\U" ); 6(3) — a(n—r), W

may be identified as member of the family dg and their biases and MSEs can be
obtained from (3.69) and (3.70) respectively, where a(u*), a(v*), A (]:Za(n,r), u*)

and A (]f?a(n_r)jv*> are the functions of u*, v*, <_ﬁia(n_r),u*) and (}?a(n_r),v*>
such that a(1) = 1 and A(R(),1) = R(o) which implies A;(R(q,1) = 1.

Remark 3.9. If we set « = 0 in d5,d6,d( ). 77 =1,2,3,4, we get the families of
estimators for population mean Y; as

0 — * * 0 —_ *
dé()l) = yo(nﬂ«)a(u , U ); dé(% =A (yo (n—r)s u* , U ) ,dé(;) yo(nfr)a(u );
© _ = wy, 7000 = *
d6(4) - yO(nfr)a(U )7 d6(5) =A (yO(nfr) ) and d6(6) A (yO(nfr)a v )
where a(u*,v*), A (yg(n_r),u*, v*) ca(u), a(v), A (gjo(n s u*) A (y_o(n_T),'U*) are
the functions of (u*,vi), (gjo(n,T), u*,v*) , (Qo(n,r),u*) and (yo (n—r)» *)_such theit
a(1,1) = 1, A(Dy) = Yy which implies A1(Dy) = 1,a(1) = 1, and A(Yp, 1) =Y,
which implies that A4;(Yp, 1) = 1. Putting o = 0 and suitable values of deriva-
tives in (3.65) and (3.70), the biases and MSEs of these estimators can be easily
obtained.

The minimum MSEs of the estimators d )) 7 =1,2,3,4,5,6 are given by

a4
(4
A — o)’
min . MSE( 6(1)) = min. MSE [ {ng 4 (Aoospoz 102) ]

A
(3.73)
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min .MSE ( 6(3)> = min .MSE <dé(25 ) =S50 —(0"—0)(1—p5y)] (374
and
2
min MSE (dff)) ) = min . MSE (4} ) = 3 [9* 0" — 0) {1 - %H .
(3.75)

Thus we establish the following theorem:

Theorem 3.9. Upto terms of order n~!

A — M\io2)?
0 _ (9* _ 9) {ng 4 ( 003,002A 102) }]

which equality holding if a;(1,1) = A and a»(1,1) = B for dé(g)l)’ and if

AQ(DQ) = }_/()AH and Ag(Do) }/()BH fOI dé@)

(i) MSE <d(0) or dé%) > S2

(i) MSE (di ordi)) ) = 5316 — (67— 6) (1 — k)
with equality holding if a1(1) = — Ky for dé(();), and if A, (}72, 1) = —Y, Koo
for d\¥)

6(5)"

(iii) MSE (dgg;) or dggg)) > §2 [9* _ (0" —0) {1 _ A_}]

Aooa—1

with equality holding if ax(1) = —AipCo/(Aoos — 1) for dg), and if A3(¥p, 1) =
~YoA102C0/(Mgos — 1) for d(o) It is to be mentioned that the estimator d(o)

Yotn—r) + asp(u* — 1) is a member of dy 0) ) (or d(o) )) but not of d6(3) (or d6(1)) It
can be shown to the first degree of approxmlatlon that
) 0
min MSE (d{(}, ) = min MSE (d))) (3.76)

where min .MSE (dé%) is given by (3.74). The estimator dé(z)ﬂ is due to Singh,
Joarder and Tracy (2000).

3.3.1 Estimators Based on Estimated Parameters

The estimated optimum values of a;(1,1) and ay(1,1) based on sample obser-

vations are respectively given by
a1(1,1) = A, (say) and ay(1,1) = B, (say). (3.77)

Thus we define a family of estimators (based on estimated optimum values) for

R(a) as

d; = Ra(n_r)a* (U*, ’U*7 AQ, BQ) (378)
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where a*(+) is a function of (u*, v*, Ay, E2> such that a*(Z) = 1,aj(Z) = A,
a3(Z) = B,a3(Z) = 0, and «j(Z) = 0. It can be shown, to the first degree of
approximation, that

MSE(dZ) = min.MSE(ds)

where min .MSE(dj is given by (3.67).

Further a wider class of estimators (based on estimated optimum parameters)
of R, is defined by

dZ = A" (Ra(n—r)a u*a U*, A; B;) (379)

where A*(-) is a function of (]%a(n,r), u, v, A, é;) such that A*(Q) = R, A1(Q) =
LA3(Q) = A% A3(Q) = B*, 45(Q) = 0,43(Q) = 0 with A5 = Rau—r)Az and
E; = f{a(n_r)EQ. It is easy to verify that to the first degree of approximation,

MSE (dg) = min .MSE (df) = min .MSE (ds)
where min .MSE (d5) is given in (3.67). The estimator

) = R + A5(u* — 1) + By (v* — 1)

is a particular member of the family df. The MSE of df, to terms of order n™!,

is same as that of d}.

Similar many other families of estimators based on estimated optimum values
can be defined with their approximate MSEs formulae.

Now, we give below the consistent estimators of the minimum MSEs of the

family of estimators.

Theorem 3.10. Estimators of the minimum MSE of the family of estimators
ds (or dg)(or MSE of df or df), dgg),j =12, dé(();) (or dé(()z.))) and dé[()i) (or dé(())ﬁ)) are,
respectively, given by

min MSE(d;) = MSE(d?) = min . MSE (Ra(n_r)> — (0" =)y Bagnr),
min .MSE (d((a?)l)) = min MSE (dé(g)z)> = sg(n_r) [é* — (6" -0) </332(n_r) + CA*a(n_T)H ,

min MSE (di), ) = min MSE (i}, ) = 53, [0+ (0 = 0) (1 = o) |
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and
min .MSE (d (4)) — min MSE (de(e)) (n_,,) [9 + (6" —0) {1 - ;\%02(11—7")/ (;\004 - 1) }] ,

where 7 = 5,6 and min MSE (Ra(n_,,)> is given in Theorem 3.4.

4 Efficiency Comparisons

From (3.5), (3.7), (3.23) and (3.24), we have

MSE (}?za(n,”) min MSE(d;) = 6° R, By > 0, (4.1)
MSE (ﬁa(n_r)) — min MSE(dy1)) = 6" B2, C3 K2, > 0, (4.2)
MSE (Ra(n_,«)) — min MSE(dy(5)) = 0" B2y &2/ (Moos — 1) > 0, (4.3)

2
() A A
{K(0)Ca(Aoos — 1) — d(a)>\003}2

MSE (dy1)) — min MSE(d;) = 0" R2 ) =2 > 0, (4.4)

min .MSE (dy(2)) — min .MSE(d;) = 0* R} > 0.
(o) ) = 0 =Ny =D o — 1) >
(4.5)
Thus we have the following inequalities
min MSE (d1) < min . MSE (di1)) < MSE (fagu ) (4.6)
and
min MSE (d;) < min.MSE (dy(2)) < MSE (Ra(n_r)) . (4.7)
It is well known that
Var (ﬂo(n_r)) = 9*5(2) (4.8)
From (3.27), (3.32), (3.33) and (4.8) we have
Var (Gon—r)) — min .MSE (d ) 0*S2pay > (4.9)
Var (fogn_r)) — min . MSE <d1(2)> = 0°52)20,/ (Moot — 1) > 0, (4.10)

min .MSE (d1(1)> — min .MSE <d§1)) = 0*8(2) ()\Qogpgg — )\102)2 /A > 0, (411)

min .MSE <d1(2)) — min .MSE <d > = Q*S (p02 ()\004 - 1) )\102)\003)2 /A Z 0.
(4.12)
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Thus we have the following inequalities:
min MSE (d{") < min MSE (d{}})) < Var (jo-) (4.13)

and
min .MSE (d > < min .MSE <d(1))> <Var (go(n_,)) . (4.14)

It follows from (4.13) and (4.14) that the estimator d (' is more efficient than

Yo(n—r) dgl()l), d112 and Singh, Joarder and Tracy (2000) estimator d2(3

Similarly following inequalities can easily be proved:
min MSE (ds) < min MSE (d})) < MSE (Rogu ) ) (4.15)
and
min MSE (d;) < min MSE (d{(})) < MSE (o) (4.16)

Thus from (4.15) and (4.16) it follows that the suggested family of estimators
ds(ord}ordy,) is better than the conventional estimator Ra(n_r), dil()l)

(or dil(é)) and or dil() (or d4(4 ).

From (3.58), (3.59), (3.60) and (4.8) following inequalities hold:

min .MSE ( A1 ) min .MSE (d(o ) <Var (Qo(n—r)) (4.17)

)

and

min .MSE (d4(1)) < min .MSE (d ())> <Var (yo (n— T)) ) (4.18)
(0)

Thus the proposed estimator d O) (or d 4(2)) is better than usual unbiased estimator

Yo(n—r) d((z (or d4(5)) d4(4)(or d( 5)) and Singh, Joarder and Tracy (2000) estimator
(0)
dymy-
Further it can be easily proved that
min .MSE(d5;) < min.MSE ( ) < MSE <Ra(n_r)> (4.19)

and

min MSE(ds) < min.MSE (df(),) < MSE (Ragu ) (4.20)

Thus the proposed family of estimators ds(or dg) is more efficient than
; 1 1
Ro(n—r), dé()n(or dé() ), and d6(2 (or d6(4))

From (3.73), (3.74), (3.75) and (4.8) it is easy to see that

min .MSE (dG(l)) < min .MSE (dé%) <Var (gjo(n_r)) (4.21)
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and

min .MSE (d(o)

6(1)> < min.MSE (dé%) <Var (gO(nfr)) . (4.22)

It follows from (4.21) and (4.22) that the estimator dgz)l)(or dég)) is more efficient

than the estimator goum—r), dé(z?,)) (or dé%)), d(ﬁta) (or dél(é)) and the estimator dé(z)ﬂ due

to Singh, Joarder and Tracy (2000). From (3.7), (3.42) and (3.67) we have

min .MSE(ds) — min MSE(dy) = (6* — 0) R, A3 /A >0, (4.23)
and
min.MSE(d5) — min .MSE(ds) = 0R{,) By > 0. (4.24)

It follows from the above inequalities that the proposed family d;(ord}) is the
best among all the estimators discussed in the present investigation.

5 Conclusion

The article has suggested families of estimators of the parameter R, in pres-
ence of random non-response together with their biases and mean squared errors.
The proposed families include several classes of estimators of the parameters R
whose biases and mean squared errors can be obtained easily. Thus the pro-
posal of families of estimators is justified as they unify several results. It has
been shown that the proposed families are better than usual estimators as well as
several other families of estimators. It is interesting to note that the families of
estimators based on ’estimated optimum values’ have same mean squared errors
up to first degree of approximation, as that of optimum estimators in the families
which depend upon the unknown population parameters. It also provides several
families of estimators of popultion mean Y, which are better than conventional
unbiased estimator and Singh, Joarder and Tracy (2000) estimators. Finally it
is found that the proposed family d;(or d;) or dy (or d}) is the best in the sense
that it has least minimum MSE.

6 Appendix: General Notations

The following notations have been used throughout the paper: N : Number of
units in the population; n : number of units in the sample; r : number of sampling
units on which information could not be obtained due to random non-response

(r=20,1,2,...,(n —2));p : the probability of non-response among the (n — 2)
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n

possible values of non-response; ¢ = (1—p); 0 = (— — —) 0* = <nq+2p ) (0=
(0*—0); SRSWOR: Simple random without replacement sample (n—r) : Number
of remaining units in the sample treated as SRSWOR sample from the population;

B(-): Bias of (-); MSE(-): mean squared error.

For variates 1y, y1, and v, in the population: Y; = N~ Zjvzl Y * the popu-
lation mean of the ith variate y;(i = 0,1,2) : Ry = Yo/Y}, (371 =+ O) : the pop-
ulation parameter under study; « : being a scalar takes values 0,1 and —1; C} :
the population coefficient of variation (CV) of the variate y;(i = 0,1,2); py =
Su/(S:S)),i # 1 : the population correlation coefficient between the variates y;
and y,(i #1=0,1,2);

N

(N—-1)Sy = Z (yi; = Y3) 5 (wy — Y1) Ky = paCi/Ci(i #1=0,1,2);

K( ) = (Koz - CYK12) d ()\102 - 04)\01201) Ay = A1/ (ACQ);

A* = RyA; B = AQ/A, B = R B;

An = A11/ (ACQ) ;B = A22/A; Ay = [d(a))\OOS - K(a) (>\004 - 1) 02} )
Ny = [K(a))\OOBCQ - d(a)} ;

A= ()\004 - /\(2)03 - 1) > 0; A = [)\10100 — Ko ()\004 - 1) Cz] )

Noy = [KoaA03C2 — M02C0] 5 Blay = <K(2a)022 + ABZ) ;

K =—Kp k"= —Y()Koz = —502?2,502 = 502/522;
mi1/2 mo/2 m3/2
)‘m1m2m3 = :um1m2m3/ H2010/ MOQ%)/ HOO32/ )

(N = Dimimaoms = Zjvzl (yoj - Yo)ml (ylj - }71)m2 (y2j - %)mg ;

(m1, ma, m3) non-negative integers.

For the variates v, y; and y» in the sameIe: Ui =n"t 2?21 vij, (1 =0,1,2); R(a) =
Go/Uts (G # 0); (0 —1)sf = D70 (Yig — i)™ 5 (0 = 1) Yi(n—r) = D_1—1 Yijs
(n—r—1)s Sitn—r) = Z;Zf (yij — gjl-(n_r))2 : the conditional unbiased estimator of
812<Z = O) 17 27 )7 -Fia(n—r) = ?jo(n—r)/’ljf(n_r), (gl(n—r) 7£ O) y U= ,@2/3/2, V= 3%/5227
U(n—r) = Patn—r) /Y25 Vin-1) = Sy /S50 = Painr) [J23 V* = S50/ 53;

A= A1(n77')/ (A nfr)02> ;B = A2 (n—r) /A —7r); A* = Ra(nfr)A; B*
== Ra(nfr)B Al A /(ACQ) A / A > Al = AQ/A,
B Q/AA*—RanrAl,B*—R( nBy; Ay = R Ay: By = R ;

A = Ra(n—r)AQ; B; = Ra(n—r)B2; A =
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Binen) = (XOM(”—N — Nos(nr) 1) ;

Al(n—r) = [da(n—r)j\OOZ’)(n—r) — Kotnn (5\004(71_” _ 1) C2} :

Aoy = [(ia(nfr)j\oo‘%(nfr)CQ — Cia(nfr):| A = [&a(n,ﬂﬁmg - K, (;\004 _ 1) 02] ;
b~ ot o]

Bi= [Cza(”_r)jw’ ~ Kl (xo‘” N 1) ég] 85 = [Kz(nfr)j‘OOSCAb - cZa(n—ﬂ} :
Konr = [KOQ(n—T) - aKlQ(n—r)] ;

~

da(n—r) = [5\102(n—r)éo(n—r) - &;\012(n—r)c'1(n—r)] ;kfa) = <f(02 - Oéf(lz) )
K;(n_T) = (KSQ - af(ﬁ)
Cotnr) = /T200tm—r)/Totn—r); Cinr) = \/T020m—r)/T1(n—r; Comr)
= \/ [l002(n—r)/ Y2(n—r);
Koatn—r) = po2n—r)Comn—r)/C2 Kiatn-r) = p12(n—r)Citn-r)/ C2; Poatn—r) = {101 (n—r)/
\/ﬂ(n—r)ﬂOOQ(n—r);
/312(n—r) = ﬂon(n—r)/\/ﬂOQO(n—r)ﬂow(n—r); Koz = ;60200(71—7’)/02; f(m = ﬁlQél(n—r)/CQ;
Po2 = ﬂlol(n—r)/ [4200(n—r) 0025 P12 = ﬂou(n—r)/\/ 1020 (n—r) H002;
KSQ = {ﬂ101(nfr)372} / {ﬂooﬂo(nw)} ;
f:(fg = {,&Oll(nfr)g%} / {ﬂ002?0(n7r)} ; ?2 = Vfioo2/ Y2
Ayin—ry = Kam-r)Ao03(n—1) C2(n—r) = da(n-r);
Koi(nr) = po1(n—r)Cotn—r)/Crtn-r; 0 = (1/(nG+25) — 1/N); por(n—r) = fir10(n—r)/
\/ ﬂQOO(n—r)ﬂo20(n—r)§ and
= {(n 147 —/In— L+ 72 —drn(n—3)/(n— 2)} J{2(n — 3)};
(1—=p);
n—1—=1)flmymym, = Z (ij — %(n—r))m1 (ylj — Ql(n—r))m (y2j - gQ(n—T))m3 ;
j=1
Bam-r) = K2,_,C3 + {Kam—mxooz’u@ - da(n—r)} / (%04 — M2y — 1) ;

3 _ o~ ~T1 Mo AT
)\mlm2m3 - ,umlmzmg/ K200 020002
n

(7= Dftmmams = Y Wog = T0)™ 1y — 51)™ (y2; — 52)"™ ;

2
Il

n—r

—~

=1

A A 2 A ~
Ca(n—r) = <A003ﬁ02(n—r) - )\102(71—7")) / <>\004 - )\%03 - 1) ;

~

A = [l - - — : (mq, ma, ms3); non-negative
mimams(n—r) Mmlmzms("—?")/\/MZS%(W@MS';%(%T)MBTS%(Wﬂ’( 1, 1762, 3)7 g

integers.

In addition, we have used the following;:

o H; (R(a), 1) and Hy (R(a), 1) : denote the first order partial derivatives of
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the function H (fx’(a),u> with respect to (w.r.t) R(a) and u respectively
about the point (R(a), 1) :

I

H;; (R(a), 1) ,(i,7 = 1,2) : denote the second order partial derivatives of
the function H }?(a), u) about the point (R(a), 1) ;

t1(1,1) and t5(1, 1) : denote the first order partial derivatives of the function
t(u,v) w.r.t. u and v respectively about the point (1,1);

ti;(1,1),(,5 = 1,2) : denote the second order partial derivatives of the
function ¢(u,v) about the point (1,1);

T1(D),T5(D) and T5(D) : denote the first order partial derivatives of the of
the function T’ }A%(a), u,v | w.r.t. R(a), u and v respectively about the point

D = (R 1.1):

T:;(D),(i,7 = 1,2) : denote the second order partial derivatives of the
function T (R(a), u, V) about the point D;

f1(1,1) and f5(1, 1) : denote the first order partial derivatives of the function
f (u(n_r), V(n_,,)) W.I.t. Un—y) and v, respectively about the point (1,1);

fi;(1,1),(¢,5 = 1,2) : denote the second order partial derivatives of the
function f(u(—r), V(m—-r)) about the point (1, 1);

(f1(1), f11(1)) and (f2(1), f22(1)) : denote the first and second order partial
derivatives of the functions f (u(n_r)) and f (V(n_,,)) with respect to ()

and v(,_,) respectively about the point unity’.

hi and hq1(1) : denote the first and the second order partial derivatives of
the function h(u) about the point 'unity’.

Fi(D), F5(D) and F5(D) : denote the first order partial derivatives of the
function F (R(a),u(n,r),y(n,r)> w.r.t. }?(a),u(n,r) and v(,_,) respectively
about the point D;

F;(D),(i,j = 1,2,3) : denote the second order partial derivatives of the
function F' (R(a), U(n—r), V(n_,,)> about the point D;

F (R(a), 1) , Iy (R(a), 1) and F3 (R(a), 1) : denote the first order partial
derivatives of the functions (F <]-A2a(n_r),u(n_r)) , F (fia(n_r), V(n_r)>) w.r.t.

~

éa(n_r),F (Ra(n_r),u(n_ﬂ> w.rt. Ugop), and F <Ra(n—7‘)7u(n—r)) w.r.t.
V(n—ry Tespectively about the point (R(a), 1) ;
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Fiy (R(a), 1) and Fyy (R(a)7 1) : denote the second order partial derivatives
of the function F' (Ra(n,T), u(n,T)> about the point (R(a), 1) :

Fis (R(a), ) and Fj3 (R( ) ) : denote the second order partial derivatives
of the function F' (R )> Un—r) > about the point (R(a), 1) ;

(2), f3(2), f3(Z) and ff(Z) : denote the first order partial derivatives of
the function f* (u(n_T),V(n_r),/l, B) wW.rb Uy, u(n_T),fl and B respec-
tively about the point Z = (1,1, A, B);

FHQY), F5(QY), F5(QY), Ff(Q*) and FZF(Q*) : denote the first order partial
derivatives of the function F R (n=r)> U(n—r)s Y(n—r) A B) w.r.t.

A

Rotn—r), Utn=r), Vin—r), A* and B* respectively about the point Q* = ( (a), 1,1, A* B*) ;

F1(Dy), F5(Dg) and F3(Dy) : denote the first order partial derivatives of the
function F' (gjo(n_r),u(n_r), y(n_r)) W.I.t. Yo(n—r)s Un—r) about v(,_,) and the
point Dy = (YO, 1, 1) ;

Fi;j(Dy), (4,5 = 1,2 3) denote the second order partial derivatives of the
function F' ( Yo(n l/(n_r)) about the point Dy = (YO, 1, 1) ;

FQ(YO, 1) : denotes the first order partial derivative of the function F' (go(n,r), u(n,r))
w.r.t. Ugm—,) about the point (Yp,1) :

F;j(Yo,1),(i,5 = 1,2) : denote the second order partial derivatives of the
function F' (Qo(n,r), u(n,T)) about the point (Y, 1);

F3(Yy, 1) : denotes the first order partial derivative of the function
F (gO(n—r)7U(n—r)) w.r.t Vg, about the point (Yo, 1);

F;;j(Yo,1),(i,5 = 1,3) : denote the second order partial derivatives of the
function F' (go(n_r), V(n_r)) about the point (Yp,1);

¢1(1,1) and ¢5(1,1) : denote the first order partial derivatives of the func-
tion ¢(u,r) w.r.t. u and v respectively about the point (1,1);

¢ij(1,1), (4,7 = 1,2) : denote the second order partial derivatives of the
function ¢(u, ) about the point (1,1);

®1(D), Py(D) and <I>3(D) : denote the first order partial derivatives of the
function ® (R LU 1/) w.r.t. Ra(n_r),u and v respectively about the

point D;
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®,;(D), (i,j = 12,3) : denote the second order partial derivatives of the
function ¢ (Ra(n_r), u, 1/) about the point D;

Dy (Dy), Po(Dy) and P3(Dg) : denote the first order partial derivatives of
the function ® (go(n_r),u, v) w.r.t. Yom—r),u and v respectively about the
point Dy;

P, (570, 1) : denotes the first order partial derivative of the functions ® (gg(n,r), u)
and ¢ (@O(H_r), 1/) w.r.t. Yon—r), about the point (Y, 1);

®,(Yp, 1) : denotes the first order partial derivative of the functions ® (yg(n,r), u)
w.r.t. u about the point (Yp,1);

®3(Yp, 1) : denotes the first order partial derivative of the function ® (go(n_T), y)
w.r.t. v about the point (Y, 1);

®(1) and ®5(1) : denote the first order partial derivative of the function
®(u) and ®(v) w.r.t. u and v respectively about the point ‘unity’.

D, (R(a),l) : denotes the first order partial derivative of the functions
P (}?a(n_r), u) and ¢ (Ra(n_r), I/) w.r.t. Ra(n_r) about the point (R(a), 1) :

O1(Z), P5(2), P5(Z) and ®5(Z) : denote the first order partial derivatives
of the function ®* (u,y, AT,BT) w.r.t. u,v, fl’{ and Bf about the point
(1,1, A", B*) = Z,;

O3 (Z%), 5(Z*), 5(Z*) and ®}(Z*) : denote the first order partial deriva-
tives of the function ®* (Z%a(n,T),u, v, A’{,B’f) w.I.t. éa(n,r),u, v, A’{ and
f?ik about the point (R(a), 1,1, A", B*) =7%

ai(1,1) and a(1,1) : denote the first order partial derivatives of the function
a(u*,v*) w.r.t. u* and v* respectively about the point (1,1);

a;;(1,1),4,j = 1,2 : denotes the first order partial derivatives of the function
a(u*,v*) about the point (1,1);

Aq(D), A3(D) and As(D) : denote the first order partial derivatives of the
function A }?ia(n_r), u*, v | w.r.t. Ra(n_r), u* and v* respectively about the
point D;

A;;(D),i,7 = 1,2,3 : denote the second order partial derivatives of the
function A (Ra(n,r), u*, u*) about the point D;



34

o A (R(a), 1) : denotes the first order partial derivative of the functions

A (Ra(n,r), u*) and A (Ra(n,r), l/*> with respect to Ea(n,r) about the point
(Ra)> 1) ;

o Ai(Dy), A2(Dy) and As(Dy) : denote the first order partial derivatives of
the function A (go(n,r), u*, V*) w.r.t. Yom—r),u" and v* respectively about
the point Dy;

e A;(Yp, 1) : denotes the first order partial derivative of the function A (gjo(n_r), u*)
and A (go(n,r), y*) w.r.t. Jon—r) about the point ()70, 1) ;

o Ay(Yp, 1) : denotes the first order partial derivative of the function A (gjo(n_,,), u*)
w.r.t. u* about the point (Y, 1);

° Ag(}_/g, 1) : denotes the first order partial derivative of the function A (@O(H_r), 1/*)
w.r.t. v* about the point (Yp, 1);

e a;(1) : denotes the first order partial derivative of the function a(u*) w.r.t.

u* about the point ‘unity’;

e ay(1) : denotes the first order partial derivative of the function a(v*) w.r.t.

v* about the point ‘unity’;

o ai(Z),a5(Z),a3(Z) and aj(Z) : denote the first order partial derivatives of
the function a* (u*,v*, As, Bg) w.r.t. u*, v, Ay and B, respectively about
the point Z;

o A1(Q%), A5(QF), AL(Q*), A5(Q*) and A%(Q*) : denote the first order partial
derivatives of the function A* fia(n_r), u*, v, A;, B’;‘) w.r.t. Ji’a(n_,,), u*, v, fl§

and l%; respectively about the point Q*;
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