a. $\chi^2 = [(20-1)(20)^2]/300 = 25.3333$

If $\chi^2 > 30.1435$, reject H_o, otherwise do not reject H_o

Since 25.3333 < 30.1435 do not reject Ho and conclude that the population variance is less than 300

b. $\chi^2 = [(15-1)(367)]/300 = 17.1267$

Decision Rule: If $\chi^2 > 21.0641$, reject H_o, otherwise do not reject H_o

Since 17.1267 < 21.0641 do not reject Ho

10.8.

Students need to select the alpha level. The solution assumes alpha = .05. If a different alpha level is selected, the critical Chi-square will change and the decision might be different. This represents a good opportunity to discuss the importance of thinking about the desired alpha level.

H_o:
$$\sigma^2 \le 400$$

H_a: $\sigma^2 > 400$

Using Excel's VAR function or manually compute $s^2 = 769.2746$

 $\chi^2 = [(12-1)(769.2746)]/400 = 21.1551$

Decision Rule:

If $\chi^2 > 19.6752$, reject H_o, otherwise do not reject H_o

Since 21.1551 > 19.6752 reject Ho and conclude that the population variance is greater than 400

10.9.

a. $H_o: \mu = 0$ $H_a: \mu \neq 0$

Using Excel's AVERAGE and STDEV functions

x = 1.6667 s = 4.9787

$$t = (1.6667 - 0)/(4.9787/\sqrt{12}) = 1.1597$$

$$t_{.05/2} = \pm 2.2010$$

Since t = 1.1597 < 2.2010 do not reject H_o and conclude that the average arrival time is on time. Because this is a t-distribution you must assume that the underlying population is normally distributed.

b. $H_{o}: \sigma^{2} \leq 4$ $H_{a}: \sigma^{2} > 4$

10.5.

 $\chi^2 = [(12-1)(4.9787)^2]/4 = 68.1655$

Decision Rule:

If $\chi^2 > 19.6752$, reject H_o, otherwise do not reject H_o

Since 68.1655 > 19.6752 do reject Ho and conclude that the population variance is greater than 4

c. From part a and b airlines should conclude that on the average the planes arrive on time but with variance greater than 4

a. $s_1 = 2.8975$ $s_2 = 2.7033$

H₀: $\sigma_1^2 = \sigma_2^2$ H_A: $\sigma_1^2 \neq \sigma_2^2$

Using Appendix H with $D_1 = 9$ and $D_2 = 9$: If the calculated F > 3.179, reject H₀, otherwise do not reject H₀.

 $F = 2.8975^2/2.7033^2 = 1.1488$ Since 1.1488 < 3.179 do not reject H₀

b. Using Excel the p-value = 0.4198. Using the Appendix values we see the calculated F is less than the F for $\alpha = .05$ of 3.179. Therefore the p-value is greater than .05.

10.19.

 $\begin{array}{l} H_0: \ {\sigma_d}^2 = {\sigma_w}^2 \\ H_A: \ {\sigma_d}^2 \neq {\sigma_w}^2 \end{array}$

Using Appendix H with $D_1 = 12$ and $D_2 = 8$: If the calculated F > 3.284, reject H₀, otherwise do not reject H₀

 $F = 2^2/1.2^2 = 2.7778$

Since 2.7778 < 3.284 do not reject $\rm H_o$ and conclude that there is no difference in the standard deviations

10.24.

H₀: $\sigma_1^2 = \sigma_2^2$ H_A: $\sigma_1^2 \neq \sigma_2^2$

a. If the calculated F > 2.5769, reject H_0 , otherwise do not reject H_0

 $F = 300^2 / 250^2 = 1.44$

Since 1.44 < 2.577 do not reject H_0 and conclude that the standard deviations are equal

b. If the calculated F > 3.905, reject H_o, otherwise do not reject H₀

The conclusion does not differ

c. Use Excel's FDIST(1.44,13,13) which gives 0.26 which would be for a twotailed test you would need an alpha of 0.26(2) = 0.52